skip to main content


Search for: All records

Creators/Authors contains: "McQueen, Tyrel M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localizedf-electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency off-electrons to polarize in a strong magnetic field, consequently weakening the interactions. In this study, we propose that the quantum limit in such systems must be approached in reverse, starting from an insulating state at zero magnetic field. In this scenario, Landau levels fill in the reverse order compared to regular metals and are closely linked to a field-induced insulator-to-metal transition. We identify YbB12as a prime candidate for observing this effect and propose the presence of an excitonic insulator state near this transition.

     
    more » « less
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Building on discoveries in graphene and two-dimensional (2D) transition metal dichalcogenides, van der Waals (VdW) layered heterostructures—stacks of such 2D materials—are being extensively explored with resulting new discoveries of novel electronic and magnetic properties in the ultrathin limit. Here, we review a class of naturally occurring heterostructures—the so-called misfits—that combine disparate VdW layers with complex stacking. Exhibiting remarkable structural complexity and diversity of phenomena, misfits provide a platform on which to systematically explore the energetics and local bonding constraints of heterostructures and how they can be used to engineer novel quantum fabrics, electronic responsiveness, and magnetic phenomena. Like traditional classes of layered materials, they are often exfoliatable and thus also incorporatable as units in manually or robotically stacked heterostructures. Here, we review the known classes of misfit structures, the tools for their single crystal and thin film synthesis, the physical properties they exhibit, and the computational and characterization tools available to unravel their complexity. Directions for future research are also discussed. 
    more » « less
  5. OpenMSIStream provides seamless connection of scientific data stores with streaming infrastructure to allow researchers to leverage the power of decoupled, real-time data streaming architectures. Data streaming is the process of transmitting, ingesting, and processing data continuously rather than in batches. Access to streaming data has revolutionized many industries in the past decade and created entirely new standards of practice and types of analytics. While not yet commonly used in scientific research, data streaming has the potential to become a key technology to drive rapid advances in scientific data collection (e.g., Brookhaven National Lab (2022)). This paucity of streaming infrastructures linking complex scientific systems is due to a lack of tools that facilitate streaming in the diverse and distributed systems common in modern research. OpenMSIStream closes this gap between underlying streaming systems and common scientific infrastructure. Closing this gap empowers novel streaming applications for scientific data including automation of data curation, reduction, and analysis; real-time experiment monitoring and control; and flexible deployment of AI/ML to guide autonomous research. Streaming data generally refers to data continuously generated from multiple sources and passed in small packets (termed messages). Streaming data messages are typically organized in groups called topics and persist for periods of time conducive to processing for multiple uses either sequentially or in small groups. The resulting flows of raw data, metadata, and processing results form “ecosystems” that automate varied data-driven tasks. A strength of data streaming ecosystems is the use of publish-subscribe (“pub/sub”) messaging backbones that decouple data senders (publishers) and recipients (subscribers). Popular message-focused middleware solutions such as RabbitMQ (VMware, 2022), Apache Pulsar (Apache Software Foundation, 2022b), and Apache Kafka (Apache Software Foundation, 2022a) all provide differing capabilities as backbones. OpenMSIStream provides robust and efficient, yet easy, access to the rich data streaming systems of Apache Kafka. 
    more » « less
  6. Abstract

    The presence of inclusions, twinning, and low-angle grain boundaries, demanded to exist by the third law of thermodynamics, drive the behavior of quantum materials. Identification and quantification of these structural complexities often requires destructive techniques. X-ray micro-computed tomography (µCT) uses high-energy X-rays to non-destructively generate 3D representations of a material with micron/nanometer precision, taking advantage of various contrast mechanisms to enable the quantification of the types and number of inhomogeneities. We present case studies of µCT informing materials design of electronic and quantum materials, and the benefits to characterizing inclusions, twinning, and low-angle grain boundaries as well as optimizing crystal growth processes. We discuss recent improvements in µCT instrumentation that enable elemental analysis and orientation to be obtained on crystalline samples. The benefits of µCT as a non-destructive tool to analyze bulk samples should encourage the community to adapt this technology into everyday use for quantum materials discovery.

     
    more » « less
  7. ScSI, a missing member of the rare earth sulfoiodide (RESI) family of materials, has been synthesized for the first time. ScSI crystallizes in the FeOCl structure type, space group Pmmn (No. 59), a = 3.8904(2), b = 5.0732(9), c = 8.9574(6) Å. Both hyperspectral reflectance measurements and ab initio calculations support the presence of an indirect optical band gap of 2.0 eV. The bulk crystal is found to be readily exfoliatable, enabling its use as an optical component in novel heterostructures. The impact of lithium intercalation on its electronic band structure is also explored. A broader correlation is drawn between the observed structural trends in all known 1:1:1 sulfoiodide phases, cationic proportions, and electronic considerations. The realization of this phase both fills a significant synthetic gap in the literature and presents a novel exfoliatable phase for use as an optical component in next-generation heterostructure devices. 
    more » « less