skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Informing quantum materials discovery and synthesis using X-ray micro-computed tomography
Abstract The presence of inclusions, twinning, and low-angle grain boundaries, demanded to exist by the third law of thermodynamics, drive the behavior of quantum materials. Identification and quantification of these structural complexities often requires destructive techniques. X-ray micro-computed tomography (µCT) uses high-energy X-rays to non-destructively generate 3D representations of a material with micron/nanometer precision, taking advantage of various contrast mechanisms to enable the quantification of the types and number of inhomogeneities. We present case studies of µCT informing materials design of electronic and quantum materials, and the benefits to characterizing inclusions, twinning, and low-angle grain boundaries as well as optimizing crystal growth processes. We discuss recent improvements in µCT instrumentation that enable elemental analysis and orientation to be obtained on crystalline samples. The benefits of µCT as a non-destructive tool to analyze bulk samples should encourage the community to adapt this technology into everyday use for quantum materials discovery.  more » « less
Award ID(s):
2039380
PAR ID:
10388256
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
7
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deformation twinning is a prevalent plastic deformation mode in hexagonal close-packed (HCP) materials, such as magnesium, titanium, and zirconium, and their alloys. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. Morphological and crystallographic distribution of twins in a deformed microstructure, or the so-called twinning microstructure, significantly controls material deformation behavior, ductility, formability, and failure response. Understanding the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of HCP materials for specific high-performance structural applications. This article reviews recent research efforts that aim to relate the polycrystalline microstructure with the development of its twinning microstructure through knowledge of local stress fields, specifically local stresses produced by twins and at twin/grain–boundary intersections on the formation and thickening of twins, twin transmission across grain boundaries, twin–twin junction formation, and secondary twinning. 
    more » « less
  2. The Smoky Hill Member of the Niobrara Chalk (Late Coniacian to Early Santonian), Kansas is renowned for its diverse assemblage of bromalites including coprolites, enterospirae, and even rare regurgitates. Producers of these fecal products are atributed to sharks, teleost fish and marine reptles based on their variously spiraled and non-spiraled morphologies, containing a range of invertebrate and vertebrate inclusions. Traditonally, examinaton of these fossils has necessitated sub-sampling via consumptve techniques like disaggregaton or dissoluton on either portons or the entrety of the specimen. Three-dimensional imaging techniques such as X-ray tomographic microscopy (µCT) offer a non-destructve alternatve to reveal both macroscopic and microscopic inclusions. Due to the minimal diagenetc alteraton of specimens from this locality, µCT imaging and segmentaton facilitates the extracton of structural and taphonomic informaton potentally obscured by physical extracton methods. This study employes non-destructve methods to explore the diversity of gross morphotypes represented by coprolites and a possible regurgitate from this member alongside their internal structure and inclusions. Preliminary results from segmented specimens offer insights into the taphonomic atributes of the coprolites and their ability to preserve exceptonally delicate structures, with remains of vertebral columns stll partally artculated. Lightly to non-mineralized inclusions, possibly crustaceans and scale remains, represent a hidden component of the assemblage rarely preserved otherwise. Virtual renders also enable quanttatve analysis of the inclusions with respect to the degrees of fragmentaton, the orientaton and alignment of boney inclusions relatve to the longitudinal axis of the specimen, and the relatve proportons of bone, pore space, and phosphatc matrix. This work offers a rare glimpse into the feeding, digestve, and excretory behaviors of producers whilst simultaneously capturing unique paleoecological and paleoenvironmental informaton. 
    more » « less
  3. This study investigates the effectiveness of combined thermal and athermal stimuli in mitigating the extremely high-density nature of dislocation networks in the form of low-angle grain boundaries in FeCrAl alloy. Electron wind force, generated from very low duty cycle and high current density pulses, was used as the athermal stimulus. The electron wind force stimulus alone was unable to remove the residual stress (80% low-angle grain boundaries) due to cold rolling to 25% thickness reduction. When the duty cycle was increased to allow average temperature of 100 °C, the specimen could be effectively annealed in 1 min at a current density of 3300 A/mm2. In comparison, conventional thermal annealing requires at least 750 °C and 1.5 h. For specimens with 50% thickness reduction (85% low-angle grain boundaries), the electron wind force was again unable to anneal the defects even at 3300 A/mm2 current density and average temperature of 100 °C. Intriguingly, allowing average concurrent temperature of 200 °C eliminated almost all the low-angle grain boundaries at a current density of 700 A/mm2, even lower than that required for the 25% thickness reduced specimens. Comprehensive electron and X-ray diffraction evidence show that alloys with extremely high defect density can be effectively annealed in less than a minute at approximately 200 °C, offering a substantial improvement over conventional high-temperature annealing. 
    more » « less
  4. Abstract Developing characterization strategies to better understand nanoscale features in two-dimensional nanomaterials is of crucial importance, as the properties of these materials are many times driven by nanoscale and microscale chemical and structural modifications within the material. For the case of large area monolayer MoSe2flakes, kelvin probe force microscopy coupled with tip-enhanced photoluminescence was utilized to evaluate such features including internal grain boundaries, edge effects, bilayer contributions, and effects of oxidation/aging, many of which are invisible to topographical mapping. A reduction in surface potential due ton-type behavior was observed at the edge of the flakes as well as near grain boundaries. Potential phase mapping, which corresponds to the local dielectric constant, depicted local biexciton and trion states in optically-active regions of interest such as grain boundaries. Finally, nanoscale surface potential and photoluminescence mapping was performed at several stages of oxidation, revealing that various oxidative states can be evaluated during the aging process. Importantly, all of the characterization performed in this study was non-destructive and rapid, crucial for quality evaluation of an exciting class of two-dimensional nanomaterials. 
    more » « less
  5. The complexity of shear-induced grain boundary dynamics has been historically difficult to view at the atomic scale. Meanwhile, two-dimensional (2D) colloidal crystals have gained prominence as model systems to easily explore grain boundary dynamics at single-particle resolution but have fallen short at exploring these dynamics under shear. Here, we demonstrate how an inherent interfacial shear in 2D colloidal crystals drives microstructural evolution. By assembling paramagnetic particles into polycrystalline sheets using a rotating magnetic field, we generate a particle circulation at the interface of particle-free voids. This circulation shears the crystalline bulk, operating as both a source and sink for grain boundaries. Furthermore, we show that the Read-Shockley theory for hard-condensed matter predicts the misorientation angle and energy of shear-induced low-angle grain boundaries based on their regular defect spacing. Model systems containing shear provide an ideal platform to elucidate shear-induced grain boundary dynamics for use in engineering improved/advanced materials. 
    more » « less