skip to main content


Search for: All records

Creators/Authors contains: "Meier, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    With a call in recent years to increase safety and enhance the value of emerging high-rise building clusters, skybridges as linking systems are attacking interest by urban designers and could play a key role in the development of our future cities. While the functional and economic benefits of the skybridges are realized, the effects of skybridges on structural systems are not widely understood. Researchers and practitioners in both academia and industry have been investigating the potential of the skybridge serving to increase the resiliency and sustainability of the connected structures. However, there is a gap between engineering science in academia and engineering practice in industry, which has previously limiting the research outcomes from becoming built realities. Partnering with an industry expert in high-rise building design, Skidmore, Owings & Merrill LLP, this study sought to better understand how coupling behaviors between high-rise structures using a skybridge affect various aspects of the individual and the linked structures. In this study, parametric data, including modal information, displacement, shear, and overturning moment were gathered from realistic high-rise structure models to evaluate the structural performance under static and dynamic loading when the skybridge is installed at various locations of the structures. 
    more » « less
  2. null (Ed.)
    Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create comfortable, healthy and safe indoor environments. In the control loop, the technical feature of the human demand-oriented supply can help operate HVAC effectively. Among many technical options, real time monitoring based on feedback signals from end users has been frequently reported as a critical technology to confirm optimizing building performance. Recent studies have incorporated human thermal physiologysignals and thermal comfort/discomfort status as real-time feedback signals. A series of human subject experiments used to be conducted by primarily adopting subjective questionnaire surveys in a lab-setting study, which is limited in the application for reality. With the help of advanced technologies, physiological signals have been detected, measured and processed by using multiple technical formats, such as wearable sensors. Nevertheless, they mostly require physical contacts with the skin surface in spite of the small physical dimension and compatibility with other wearable accessories, such as goggles, and intelligent bracelets. Most recently, a low cost small infrared camera has been adopted for monitoring human facial images, which could detect the facial skin temperature and blood perfusion in a contactless way. Also, according to latest pilot studies, a conventional digital camera can generate infrared images with the help of new methods, such as the Euler video magnification technology. Human thermal comfort/discomfort poses can also be detected by video methods without contacting human bodies and be analyzed by the skeleton keypoints model. In this review, new sensing technologies were summarized, their cons and pros were discussed, and extended applications for the demand-oriented ventilation were also reviewed as potential development and applications. 
    more » « less