skip to main content

Title: Improving Performance of Connected High-Rise Structures through the Use of Skybridges
With a call in recent years to increase safety and enhance the value of emerging high-rise building clusters, skybridges as linking systems are attacking interest by urban designers and could play a key role in the development of our future cities. While the functional and economic benefits of the skybridges are realized, the effects of skybridges on structural systems are not widely understood. Researchers and practitioners in both academia and industry have been investigating the potential of the skybridge serving to increase the resiliency and sustainability of the connected structures. However, there is a gap between engineering science in academia and engineering practice in industry, which has previously limiting the research outcomes from becoming built realities. Partnering with an industry expert in high-rise building design, Skidmore, Owings & Merrill LLP, this study sought to better understand how coupling behaviors between high-rise structures using a skybridge affect various aspects of the individual and the linked structures. In this study, parametric data, including modal information, displacement, shear, and overturning moment were gathered from realistic high-rise structure models to evaluate the structural performance under static and dynamic loading when the skybridge is installed at various locations of the structures.
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1659877
Publication Date:
NSF-PAR ID:
10296728
Journal Name:
17th World Conference on Earthquake Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested andmore »disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and naillaminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.« less
  2. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested andmore »disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry.« less
  3. The gap between research in academia and industry is narrowing as collaboration between the two becomes critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of topology optimization, San Francisco State University and the University ofmore »South Carolina collaborated with ARUP, a world leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly used industry software programs and provide a user-friendly and automated solution to perform topology optimization. ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a project. With developed platform, a high-rise building design from the literature was first adopted to validate the results from ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent process.« less
  4. The gap between research in academia and industry is narrowing as collaboration between the two becomes critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of topology optimization, San Francisco State University and the University ofmore »South Carolina collaborated with ARUP, a world leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly used industry software programs and provide a user-friendly and automated solution to perform topology optimization. ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a project. With the developed platform, a high-rise building design from the literature was first adopted to validate the results from ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent process.« less
  5. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Sitemore »program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed.« less