skip to main content


Search for: All records

Creators/Authors contains: "Nan, Tianxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present room-temperature measurements of magnon spin diffusion in epitaxial ferrimagnetic insulator MgAl 0.5 Fe 1.5 O 4 (MAFO) thin films near zero applied magnetic field where the sample forms a multi-domain state. Due to a weak uniaxial magnetic anisotropy, the domains are separated primarily by 180° domain walls. We find, surprisingly, that the presence of the domain walls has very little effect on the spin diffusion – nonlocal spin transport signals in the multi-domain state retain at least 95% of the maximum signal strength measured for the spatially-uniform magnetic state, over distances at least five times the typical domain size. This result is in conflict with simple models of interactions between magnons and static domain walls, which predict that the spin polarization carried by the magnons reverses upon passage through a 180° domain wall. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
    Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh. This damping enhancement in FeRh is sensitive to its fraction of antiferromagnetic and ferromagnetic phases, which can be dynamically tuned by electric fields through a strain-mediated magnetoelectric coupling. In a heterostructure of FeRh and piezoelectric PMN-PT, we demonstrated a more than 120% modulation of the effective damping by electric fields during the antiferromagnetic-to-ferromagnetic phase transition. Our results demonstrate an efficient approach to controlling the magnetization dynamics, thus enabling low-power tunable electronics. 
    more » « less
  3. Abstract

    Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices.

     
    more » « less
  4. Abstract

    Magnetization dynamics induced by spin–orbit torques in a heavy‐metal/ferromagnet can potentially be used to design low‐power spintronics and logic devices. Recent computations have suggested that a strain‐mediated spin–orbit torque (SOT) switching in magnetoelectric (ME) heterostructures is fast, energy‐efficient, and permits a deterministic 180° magnetization switching. However, its experimental realization has remained elusive. Here, the coexistence of the strain‐mediated ME coupling and the SOT in a CoFeB/Pt/ferroelectric hybrid structure is shown experimentally. The voltage‐induced strain only slightly modifies the efficiency of SOT generation, but it gives rise to an effective magnetic anisotropy and rotates the magnetic easy axis which eliminates the incubation delay in current‐induced magnetization switching. The phase field simulations show that the electric‐field‐induced effective magnetic anisotropy field can reduce the switching time approximately by a factor of three for SOT in‐plane magnetization switching. It is anticipated that such strain‐mediated ME‐SOT hybrid structures may enable field‐free, ultrafast magnetization switching.

     
    more » « less