skip to main content


Search for: All records

Creators/Authors contains: "Nicholson, Belinda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3 $\, M_{\rm \oplus}$), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15 $\, \mathrm{ R}_{\rm \oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $\rm {M_{sun}}$, R* = 1.888 ± 0.033 $\rm {R_{sun}}$, Teff = 6075 ± 90 $\rm {K}$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems. 
    more » « less