skip to main content


Search for: All records

Creators/Authors contains: "Ortega, Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In numerous graph signal processing applications, data is often missing for a variety of reasons, and predicting the missing data is essential. In this paper, we consider data on graphs modeled as bandlimited graph signals. Predicting or reconstructing the unknown signal values for such a model requires an estimate of the signal bandwidth. In this paper, we address the problem of estimating the reconstruction errors, minimizing which would thereby provide an estimate of the signal bandwidth. In doing so, we design a cross-validation approach needed for stable graph signal reconstruction and propose a method for estimating the reconstruction errors for different choices of signal bandwidth. Using this technique, we are able to estimate the reconstruction error on a variety of real-world graphs. 
    more » « less
    Free, publicly-accessible full text available June 4, 2024
  2. Modern machine learning systems are increasingly trained on large amounts of data embedded in high-dimensional spaces. Often this is done without analyzing the structure of the dataset. In this work, we propose a framework to study the geometric structure of the data. We make use of our recently introduced non-negative kernel (NNK) regression graphs to estimate the point density, intrinsic dimension, and linearity of the data manifold (curvature). We further generalize the graph construction and geometric estimation to multiple scales by iteratively merging neighborhoods in the input data. Our experiments demonstrate the effectiveness of our proposed approach over other baselines in estimating the local geometry of the data manifolds on synthetic and real datasets. 
    more » « less
    Free, publicly-accessible full text available June 4, 2024
  3. In point cloud compression, exploiting temporal redundancy for inter predictive coding is challenging because of the irregular geometry. This paper proposes an efficient block-based inter-coding scheme for color attribute compression. The scheme includes integer-precision motion estimation and an adaptive graph based in-loop filtering scheme for improved attribute prediction. The proposed block-based motion estimation scheme consists of an initial motion search that exploits geometric and color attributes, followed by a motion refinement that only minimizes color prediction error. To further improve color prediction, we propose a vertex-domain low-pass graph filtering scheme that can adaptively remove noise from predictors computed from motion estimation with different accuracy. Our experiments demonstrate significant coding gain over state-of-the-art coding methods. 
    more » « less
  4. We present a novel framework to represent sets of time-varying signals as dynamic graphs using the non-negative kernel (NNK) graph construction. We extend the original NNK framework to allow explicit delays as part of the graph construction, so that unlike in NNK, two nodes can be connected with an edge corresponding to a non-zero time delay, if there is higher similarity between the signals after shifting one of them. We also propose to characterize the similarity between signals at different nodes using the node degree and clustering coefficients of their respective visibility graphs. Graph edges that can representing temporal delays, we provide a new perspective that enables us to see the effect of synchronization in graph construction for time-series signals. For both temperature and EEG datasets, we show that our proposed approach can achieve sparse and interpretable graph representations. Furthermore, the proposed method can be useful in characterizing different EEG experiments using sparsity. 
    more » « less
  5. An increasing number of systems are being designed by gathering significant amounts of data and then optimizing the system parameters directly using the obtained data. Often this is done without analyzing the dataset structure. As task complexity, data size, and parameters all increase to millions or even billions, data summarization is becoming a major challenge. In this work, we investigate data summarization via dictionary learning (DL), leveraging the properties of recently introduced non-negative kernel regression (NNK) graphs. Our proposed NNK-Means, unlike previous DL techniques, such as kSVD, learns geometric dictionaries with atoms that are representative of the input data space. Experiments show that summarization using NNK-Means can provide better class separation compared to linear and kernel versions of kMeans and kSVD. Moreover, NNK-Means is scalable, with runtime complexity similar to that of kMeans. 
    more » « less
  6. Active learning aims to reduce the cost of labeling through selective sampling. Despite reported empirical success over passive learning, many popular active learning heuristics such as uncertainty sampling still lack satisfying theoretical guarantees. Towards closing the gap between practical use and theoretical understanding in active learning, we propose to characterize the exact behavior of uncertainty sampling for high-dimensional Gaussian mixture data, in a modern regime of big data where the numbers of samples and features are commensurately large. Through a sharp characterization of the learning results, our analysis sheds light on the important question of when uncertainty sampling works better than passive learning. Our results show that the effectiveness of uncertainty sampling is not always ensured. In fact it depends crucially on the choice of i) an adequate initial classifier used to start the active sampling process and ii) a proper loss function that allows an adaptive treatment of samples queried at various steps. 
    more » « less
  7. Feature spaces in the deep layers of convolutional neural networks (CNNs) are often very high-dimensional and difficult to inter-pret. However, convolutional layers consist of multiple channels that are activated by different types of inputs, which suggests that more insights may be gained by studying the channels and how they relate to each other. In this paper, we first analyze theoretically channel-wise non-negative kernel (CW-NNK) regression graphs, which allow us to quantify the overlap between channels and, indirectly, the intrinsic dimension of the data representation manifold. We find that redundancy between channels is significant and varies with the layer depth and the level of regularization during training. Additionally, we observe that there is a correlation between channel overlap in the last convolutional layer and generalization performance. Our experimental results demonstrate that these techniques can lead to a better understanding of deep representations. 
    more » « less
  8. We introduce chroma subsampling for 3D point cloud attribute compression by proposing a novel technique to sample points irregularly placed in 3D space. While most current video compression standards use chroma subsampling, these chroma subsampling methods cannot be directly applied to 3D point clouds, given their irregularity and sparsity. In this work, we develop a framework to incorporate chroma subsampling into geometry-based point cloud encoders, such as region adaptive hierarchical transform (RAHT) and region adaptive graph Fourier transform (RAGFT). We propose different sampling patterns on a regular 3D grid to sample the points at different rates. We use a simple graph-based nearest neighbor interpolation technique to reconstruct the full resolution point cloud at the decoder end. Experimental results demonstrate that our proposed method provides significant coding gains with negligible impact on the reconstruction quality. For some sequences, we observe a bitrate reduction of 10-15% under the Bjontegaard metric. More generally, perceptual masking makes it possible to achieve larger bitrate reductions without visible changes in quality. 
    more » « less
  9. Motivated by the success of fractional pixel motion in video coding, we explore the design of motion estimation with fractional-voxel resolution for compression of color attributes of dynamic 3D point clouds. Our proposed block-based fractional-voxel motion estimation scheme takes into account the fundamental differences between point clouds and videos, i.e., the irregularity of the distribution of voxels within a frame and across frames. We show that motion compensation can benefit from the higher resolution reference and more accurate displacements provided by fractional precision. Our proposed scheme significantly outperforms comparable methods that only use integer motion. The proposed scheme can be combined with and add sizeable gains to state-of-the-art systems that use transforms such as Region Adaptive Graph Fourier Transform and Region Adaptive Haar Transform. 
    more » « less