We present an efficient voxelization method to encode the geometry and attributes of 3D point clouds obtained from autonomous vehicles. Due to the circular scanning trajectory of sensors, the geometry of LiDAR point clouds is inherently different from that of point clouds captured from RGBD cameras. Our method exploits these specific properties to representing points in cylindrical coordinates instead of conventional Cartesian coordinates. We demonstrate that Region Adaptive Hierarchical Transform (RAHT) can be extended to this setting, leading to attribute encoding based on a volumetric partition in cylindrical coordinates. Experimental results show that our proposed voxelization outperforms conventional approaches based on Cartesian coordinates for this type of data. We observe a significant improvement in attribute coding performance with 5-10% reduction in bitrate and octree representation with 35-45% reduction in bits.
more »
« less
Point Cloud Attribute Compression Via Chroma Subsampling
We introduce chroma subsampling for 3D point cloud attribute compression by proposing a novel technique to sample points irregularly placed in 3D space. While most current video compression standards use chroma subsampling, these chroma subsampling methods cannot be directly applied to 3D point clouds, given their irregularity and sparsity. In this work, we develop a framework to incorporate chroma subsampling into geometry-based point cloud encoders, such as region adaptive hierarchical transform (RAHT) and region adaptive graph Fourier transform (RAGFT). We propose different sampling patterns on a regular 3D grid to sample the points at different rates. We use a simple graph-based nearest neighbor interpolation technique to reconstruct the full resolution point cloud at the decoder end. Experimental results demonstrate that our proposed method provides significant coding gains with negligible impact on the reconstruction quality. For some sequences, we observe a bitrate reduction of 10-15% under the Bjontegaard metric. More generally, perceptual masking makes it possible to achieve larger bitrate reductions without visible changes in quality.
more »
« less
- Award ID(s):
- 1956190
- PAR ID:
- 10340128
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Page Range / eLocation ID:
- 2579 to 2583
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by the success of fractional pixel motion in video coding, we explore the design of motion estimation with fractional-voxel resolution for compression of color attributes of dynamic 3D point clouds. Our proposed block-based fractional-voxel motion estimation scheme takes into account the fundamental differences between point clouds and videos, i.e., the irregularity of the distribution of voxels within a frame and across frames. We show that motion compensation can benefit from the higher resolution reference and more accurate displacements provided by fractional precision. Our proposed scheme significantly outperforms comparable methods that only use integer motion. The proposed scheme can be combined with and add sizeable gains to state-of-the-art systems that use transforms such as Region Adaptive Graph Fourier Transform and Region Adaptive Haar Transform.more » « less
-
Mobile edge and vehicle-based depth sending and real-time point cloud communication is an essential subtask enabling autonomous driving. In this paper, we propose a framework for point cloud multicast in VANETs using vehicle to infrastructure (V2I) communication. We employ a scalable Binary Tree embedded Quad Tree (BTQT) point cloud source encoder with bitrate elasticity to match with an adaptive random network coding (ARNC) to multicast different layers to the vehicles. The scalability of our BTQT encoded point cloud provides a trade-off in the received voxel size/quality vs channel condition whereas the ARNC helps maximize the throughput under a hard delay constraint. The solution is tested with the outdoor 3D point cloud dataset from MERL for autonomous driving. The users with good channel conditions receive a near lossless point cloud whereas users with bad channel conditions are still able to receive at least the base layer point cloud.more » « less
-
In point cloud compression, exploiting temporal redundancy for inter predictive coding is challenging because of the irregular geometry. This paper proposes an efficient block-based inter-coding scheme for color attribute compression. The scheme includes integer-precision motion estimation and an adaptive graph based in-loop filtering scheme for improved attribute prediction. The proposed block-based motion estimation scheme consists of an initial motion search that exploits geometric and color attributes, followed by a motion refinement that only minimizes color prediction error. To further improve color prediction, we propose a vertex-domain low-pass graph filtering scheme that can adaptively remove noise from predictors computed from motion estimation with different accuracy. Our experiments demonstrate significant coding gain over state-of-the-art coding methods.more » « less
-
Neural Radiance Field (NeRF) has emerged as a powerful technique for 3D scene representation due to its high rendering quality. Among its applications, mobile NeRF video-on-demand (VoD) is especially promising, beneting from both the scalability of the mobile devices and the immersive experience oered by NeRF. However, streaming NeRF videos over real-world networks presents signi cant challenges, particularly due to limited bandwidth and temporal dynamics. To address these challenges, we propose NeRFlow, a novel framework that enables adaptive streaming for NeRF videos through both bitrate and viewpoint adaptation. NeRFlow solves three fundamental problems: rst, it employs a rendering-adaptive pruning technique to determine voxel importance, selectively reducing data size without sacricing rendering quality. Second, it introduces a viewpoint-aware adaptation module that eciently compensates for uncovered regions in real time by combining preencoded master and sub-frames. Third, it incorporates a QoE-aware bitrate ladder generation framework, leveraging a genetic algorithm to optimize the number and conguration of bitrates while accounting for bandwidth dynamics and ABR algorithms. Through extensive experiments, NeRFlow is demonstrated to eectively improve user Quality of Experience (QoE) by 31.3% to 41.2%, making it an ecient solution for NeRF video streaming.more » « less
An official website of the United States government

