skip to main content


Search for: All records

Creators/Authors contains: "Ou, Xiaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In this paper, we construct the circular velocity curve of the Milky Way out to ∼30 kpc, providing an updated model of the dark matter density profile. We derive precise parallaxes for 120 309 stars with a data-driven model, using APOGEE DR17 spectra combined with GaiaDR3, 2MASS, and WISE photometry. At outer galactic radii up to 30 kpc, we find a significantly faster decline in the circular velocity curve compared to the inner parts. This decline is better fit with a cored Einasto profile with a slope parameter $0.91^{+0.04}_{-0.05}$ than a generalized Navarro–Frenk–White (NFW) profile. The virial mass of the best-fitting dark matter halo profile is only $1.81^{+0.06}_{-0.05}\times 10^{11}$ M⊙, significantly lower than what a generalized NFW profile delivers. We present a study of the potential systematics, affecting mainly large radii. Such a low mass for the Galaxy is driven by the functional forms tested, given that it probes beyond our measurements. It is found to be in tension with mass measurements from globular clusters, dwarf satellites, and streams. Our best-fitting profile also lowers the expected dark matter annihilation signal flux from the galactic centre by more than an order of magnitude, compared to an NFW profile-fit. In future work, we will explore profiles with more flexible functional forms to more fully leverage the circular velocity curve and observationally constrain the properties of the Milky Way’s dark matter halo.

     
    more » « less
  2. ABSTRACT

    Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We therefore present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries.

     
    more » « less
  3. Abstract

    Nyx is a nearby, prograde, and high-eccentricity stellar stream physically contained in the thick disk, but its origin is unknown. Nyx could be the remnant of a disrupted dwarf galaxy, in which case the associated dark matter substructure could affect terrestrial dark matter direct-detection experiments. Alternatively, Nyx could be a signature of the Milky Way’s disk formation and evolution. To determine the origin of Nyx, we obtained high-resolution spectroscopy of 34 Nyx stars using Keck/HIRES and Magellan/MIKE. A differential chemical abundance analysis shows that most Nyx stars reside in a metal-rich ([Fe/H] > −1) high-αcomponent that is chemically indistinguishable from the thick disk. This rules out the originally suggested scenario that Nyx is the remnant of a single massive dwarf galaxy merger. However, we also identify 5 substantially more metal-poor stars ([Fe/H] ∼ −2.0) whose chemical abundances are similar to those of the metal-weak thick disk. It remains unclear how stars that are chemically identical to the thick disk can be on such prograde, high-eccentricity orbits. We suggest two most likely scenarios: that Nyx is the result of an early minor dwarf galaxy merger, or that it is a record of the early spin-up of the Milky Way disk—although neither perfectly reproduces the chemodynamic observations. The most likely formation scenarios suggest that future spectroscopic surveys should find Nyx-like structures outside of the solar neighborhood.

     
    more » « less
  4. Abstract We have developed a chemodynamical approach to assign 36,010 metal-poor SkyMapper stars to various Galactic stellar populations. Using two independent techniques (velocity and action space behavior), Gaia EDR3 astrometry, and photometric metallicities, we selected stars with the characteristics of the “metal-weak” thick-disk population by minimizing contamination by the canonical thick disk or other Galactic structures. This sample comprises 7127 stars, spans a metallicity range of −3.50 < [Fe/H] < −0.8, and has a systematic rotational velocity of 〈 V ϕ 〉 = 154 km s −1 that lags that of the thick disk. Orbital eccentricities have intermediate values between typical thick-disk and halo values. The scale length is h R = 2.48 − 0.05 + 0.05 kpc, and the scale height is h Z = 1.68 − 0.15 + 0.19 kpc. The metallicity distribution function is well fit by an exponential with a slope of Δ log N / Δ [ Fe / H ] = 1.13 ± 0.06 . Overall, we find a significant metal-poor component consisting of 261 SkyMapper stars with [Fe/H] < −2.0. While our sample contains only 11 stars with [Fe/H] ≲ −3.0, investigating the JINAbase compilation of metal-poor stars reveals another 18 such stars (five have [Fe/H] < −4.0) that kinematically belong to our sample. These distinct spatial, kinematic, and chemical characteristics strongly suggest that this metal-poor, phase-mixed kinematic sample represents an independent disk component with an accretion origin in which a massive dwarf galaxy radially plunged into the early Galactic disk. Going forward, we propose to call the metal-weak thick-disk population the Atari disk, given its likely accretion origin, and in reference to it sharing space with the Galactic thin and thick disks. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)