skip to main content


Search for: All records

Creators/Authors contains: "Peter, Annika H.���G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Testing the standard cosmological model (ΛCDM) at small scales is challenging. Galaxies that inhabit low-mass dark matter halos provide an ideal test bed for dark matter models by linking observational properties of galaxies at small scales (low mass, low velocity) to low-mass dark matter halos. However, the observed kinematics of these galaxies do not align with the kinematics of the dark matter halos predicted to host them, obscuring our understanding of the low-mass end of the galaxy–halo connection. We use deep Hiobservations of low-mass galaxies at high spectral resolution in combination with cosmological simulations of dwarf galaxies to better understand the connection between dwarf galaxy kinematics and low-mass halos. Specifically, we use Hiline widths to directly compare to the maximum velocities in a dark matter halo and find that each deeper measurement approaches the expected one-to-one relationship between the observed kinematics and the predicted kinematics in ΛCDM. We also measure baryonic masses and place these on the baryonic Tully–Fisher relation (BTFR). Again, our deepest measurements approach the theoretical predictions for the low-mass end of this relation, a significant improvement on similar measurements based on line widths measured at 50% and 20% of the peak. Our data also hint at the rollover in the BTFR predicted by hydrodynamical simulations of ΛCDM for low-mass galaxies.

     
    more » « less
  2. ABSTRACT

    While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$_* \sim 10^8 \, \text{M}_\odot$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are ${\rm H}\, \rm{\small I}$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109’s halo. It is currently believed that starvation is caused by ‘weak’ ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation.

     
    more » « less
  3. ABSTRACT

    We model the stellar abundances and ages of two disrupted dwarf galaxies in the Milky Way stellar halo: Gaia-Sausage Enceladus (GSE) and Wukong/LMS-1. Using a statistically robust likelihood function, we fit one-zone models of galactic chemical evolution with exponential infall histories to both systems, deriving e-folding time-scales of τin = 1.01 ± 0.13 Gyr for GSE and $\tau _\text{in} = 3.08^{+3.19}_{-1.16}$ Gyr for Wukong/LMS-1. GSE formed stars for $\tau _\text{tot} = 5.40^{+0.32}_{-0.31}$ Gyr, sustaining star formation for ∼1.5–2 Gyr after its first infall into the Milky Way ∼10 Gyr ago. Our fit suggests that star formation lasted for $\tau _\text{tot} = 3.36^{+0.55}_{-0.47}$ Gyr in Wukong/LMS-1, though our sample does not contain any age measurements. The differences in evolutionary parameters between the two are qualitatively consistent with trends with stellar mass M⋆ predicted by simulations and semi-analytic models of galaxy formation. Our inferred values of the outflow mass-loading factor reasonably match $\eta \propto M_\star ^{-1/3}$ as predicted by galactic wind models. Our fitting method is based only on Poisson sampling from an evolutionary track and requires no binning of the data. We demonstrate its accuracy by testing against mock data, showing that it accurately recovers the input model across a broad range of sample sizes (20 ≤ N ≤ 2000) and measurement uncertainties (0.01 ≤ σ[α/Fe], σ[Fe/H] ≤ 0.5; $0.02 \le \sigma _{\log _{10}(\text{age})} \le 1$). Due to the generic nature of our derivation, this likelihood function should be applicable to one-zone models of any parametrization and easily extensible to other astrophysical models which predict tracks in some observed space.

     
    more » « less
  4. ABSTRACT

    Understanding quenching mechanisms in low-mass galaxies is essential for understanding galaxy evolution overall. In particular, isolated galaxies are important tools to help disentangle the complex internal and external processes that impact star formation. Comparisons between quenched field and satellite galaxies in the low-mass regime offer a substantial opportunity for discovery, although very few quenched galaxies with masses below $M_{\star }\, \sim \, 10^{9} {\rm M}_{\odot }$ are known outside the virial radius, Rvir, of any host halo. Importantly, simulations and observations suggest that an in-between population of backsplash galaxies also exists that may complement interpretations of environmental quenching. Backsplash galaxies – like field galaxies – reside outside the virial radius of a host halo, but their star formation can be deeply impacted by previous interactions with more massive systems. In this paper, we report the concurrent discovery of a low-mass ($M_{\star }\, \sim \, 10^{7} {\rm M}_{\odot }$) quenched galaxy approximately 1Rvir in projection from the M81 group. We use surface brightness fluctuations (SBF) to investigate the possibility that the new galaxy, dw0910+7326 (nicknamed Blobby), is a backsplash galaxy or a more distant field galaxy. The measured SBF distance of $3.21\substack{+0.15 +0.41 \\-0.15 -0.36}$ Mpc indicates that Blobby likely lies in the range 1.0 < R/Rvir < 2.7 outside the combined M81–M82 system. Given its distance and quiescence, Blobby is a good candidate for a backsplash galaxy and could provide hints about the formation and evolution of these interesting objects.

     
    more » « less
  5. Abstract

    A key goal of heliophysics is to understand how cosmic rays propagate in the solar system’s complex, dynamic environment. One observable is solar modulation, i.e., how the flux and spectrum of cosmic rays change as they propagate inward. We construct an improved force-field model, taking advantage of new measurements of magnetic power spectral density by Parker Solar Probe to predict solar modulation within the Earth’s orbit. We find that modulation of cosmic rays between the Earth and Sun is modest, at least at solar minimum and in the ecliptic plane. Our results agree much better with the limited data on cosmic-ray radial gradients within Earth’s orbit than past treatments of the force-field model. Our predictions can be tested with forthcoming direct cosmic-ray measurements in the inner heliosphere by Parker Solar Probe and Solar Orbiter. They are also important for interpreting the gamma-ray emission from the Sun due to scattering of cosmic rays with solar matter and photons.

     
    more » « less
  6. ABSTRACT

    We investigate the case for environmental quenching of the Fornax-mass satellite DDO 113, which lies only 9 kpc in projection from its host, the Large-Magellanic-Cloud-mass galaxy NGC 4214. DDO 113 was quenched about 1 Gyr ago and is virtually gas-free, while analogs in the field are predominantly star-forming and gas-rich. We use deep imaging obtained with the Large Binocular Telescope to show that DDO 113 exhibits no evidence of tidal disruption to a surface brightness of μV ∼ 29 mag arcsec−2, based on both unresolved emission and resolved stars. Mass-analogs of DDO 113 in Illustris-1 with similar hosts, small projected separations, and no significant tidal stripping first fell into their host halo 2–6 Gyr ago, showing that tidal features (or lack thereof) can be used to constrain infall times in systems where there are few other constraints on the orbit of the satellite. With the infall time setting the clock for environmental quenching mechanisms, we investigate the plausibility of several such mechanisms. We find that strangulation, the cessation of cold gas inflows, is likely the dominant quenching mechanism for DDO 113, requiring a time-averaged mass-loading factor of η = 6–11 for star-formation-driven outflows that is consistent with theoretical and observational constraints. Motivated by recent numerical work, we connect DDO 113’s strangulation to the presence of a cool circumgalactic medium (CGM) around NGC 4214. This discovery shows that the CGM of low-mass galaxies can affect their satellites significantly and motivates further work on understanding the baryon cycle in low-mass galaxies.

     
    more » « less