skip to main content


Title: Dwarf galaxy archaeology from chemical abundances and star-formation histories
ABSTRACT

We model the stellar abundances and ages of two disrupted dwarf galaxies in the Milky Way stellar halo: Gaia-Sausage Enceladus (GSE) and Wukong/LMS-1. Using a statistically robust likelihood function, we fit one-zone models of galactic chemical evolution with exponential infall histories to both systems, deriving e-folding time-scales of τin = 1.01 ± 0.13 Gyr for GSE and $\tau _\text{in} = 3.08^{+3.19}_{-1.16}$ Gyr for Wukong/LMS-1. GSE formed stars for $\tau _\text{tot} = 5.40^{+0.32}_{-0.31}$ Gyr, sustaining star formation for ∼1.5–2 Gyr after its first infall into the Milky Way ∼10 Gyr ago. Our fit suggests that star formation lasted for $\tau _\text{tot} = 3.36^{+0.55}_{-0.47}$ Gyr in Wukong/LMS-1, though our sample does not contain any age measurements. The differences in evolutionary parameters between the two are qualitatively consistent with trends with stellar mass M⋆ predicted by simulations and semi-analytic models of galaxy formation. Our inferred values of the outflow mass-loading factor reasonably match $\eta \propto M_\star ^{-1/3}$ as predicted by galactic wind models. Our fitting method is based only on Poisson sampling from an evolutionary track and requires no binning of the data. We demonstrate its accuracy by testing against mock data, showing that it accurately recovers the input model across a broad range of sample sizes (20 ≤ N ≤ 2000) and measurement uncertainties (0.01 ≤ σ[α/Fe], σ[Fe/H] ≤ 0.5; $0.02 \le \sigma _{\log _{10}(\text{age})} \le 1$). Due to the generic nature of our derivation, this likelihood function should be applicable to one-zone models of any parametrization and easily extensible to other astrophysical models which predict tracks in some observed space.

 
more » « less
Award ID(s):
1813628 2008110 2107253
PAR ID:
10470375
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5084-5109
Size(s):
p. 5084-5109
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the first detailed chemical-abundance analysis of stars from the dwarf-galaxy stellar stream Wukong/LMS-1 covering a wide metallicity range ($-3.5 \lt \rm [Fe/H] \lesssim -1.3$). We find abundance patterns that are effectively indistinguishable from the bulk of Indus and Jhelum, a pair of smaller stellar streams proposed to be dynamically associated with Wukong/LMS-1. We confirmed a carbon-enhanced metal-poor star ($\rm [C/Fe] \gt +0.7$ and $\rm [Fe/H] \sim -2.9$) in Wukong/LMS-1 with strong enhancements in Sr, Y, and Zr, which is peculiar given its solar-level [Ba/Fe]. Wukong/LMS-1 stars have high abundances of α elements up to $\rm [Fe/H] \gtrsim -2$, which is expected for relatively massive dwarfs. Towards the high-metallicity end, Wukong/LMS-1 becomes α-poor, revealing that it probably experienced fairly standard chemical evolution. We identified a pair of N- and Na-rich stars in Wukong/LMS-1, reminiscent of multiple stellar populations in globular clusters. This indicates that this dwarf galaxy contained at least one globular cluster that was completely disrupted in addition to two intact ones previously known to be associated with Wukong/LMS-1, which is possibly connected to similar evidence found in Indus. From these ≥3 globular clusters, we estimate the total mass of Wukong/LMS-1 to be ${\approx }10^{10} \, \mathrm{M}_\odot$, representing ∼1 per cent of the present-day Milky Way. Finally, the [Eu/Mg] ratio in Wukong/LMS-1 continuously increases with metallicity, making this the first example of a dwarf galaxy where the production of r-process elements is clearly dominated by delayed sources, presumably neutron-star mergers.

     
    more » « less
  2. ABSTRACT

    Stars move away from their birthplaces over time via a process known as radial migration, which blurs chemo–kinematic relations used for reconstructing the Milky Way (MW) formation history. To understand the true time evolution of the MW, one needs to take into account the effects of this process. We show that stellar birth radii can be derived directly from the data with minimum prior assumptions on the Galactic enrichment history. This is done by first recovering the time evolution of the stellar birth metallicity gradient, $\mathrm{ d}\mathrm{[Fe/H]}(R, \tau)/\mathrm{ d}R$, through its inverse relation to the metallicity range as a function of age today, allowing us to place any star with age and metallicity measurements back to its birthplace, R$_b$. Applying our method to a large high-precision data set of MW disc subgiant stars, we find a steepening of the birth metallicity gradient from 11 to 8 Gyr ago, which coincides with the time of the last massive merger, Gaia–Sausage–Enceladus (GSE). This transition appears to play a major role in shaping both the age–metallicity relation and the bimodality in the [$\alpha$/Fe]–[Fe/H] plane. By dissecting the disc into mono-R$_b$ populations, clumps in the low-[$\alpha$/Fe] sequence appear, which are not seen in the total sample and coincide in time with known star-formation bursts, possibly associated with the Sagittarius Dwarf Galaxy. We estimated that the Sun was born at $4.5\pm 0.4$ kpc from the Galactic centre. Our R$_b$ estimates provide the missing piece needed to recover the Milky Way formation history.

     
    more » « less
  3. Abstract

    Type Ia supernovae (SNe Ia) produce most of the Fe-peak elements in the Universe and therefore are a crucial ingredient in galactic chemical evolution models. SNe Ia do not explode immediately after star formation, and the delay-time distribution (DTD) has not been definitively determined by supernova surveys or theoretical models. Because the DTD also affects the relationship among age, [Fe/H], and [α/Fe] in chemical evolution models, comparison with observations of stars in the Milky Way is an important consistency check for any proposed DTD. We implement several popular forms of the DTD in combination with multiple star formation histories for the Milky Way in multizone chemical evolution models that include radial stellar migration. We compare our predicted interstellar medium abundance tracks, stellar abundance distributions, and stellar age distributions to the final data release of the Apache Point Observatory Galactic Evolution Experiment. We find that the DTD has the largest effect on the [α/Fe] distribution: a DTD with more prompt SNe Ia produces a stellar abundance distribution that is skewed toward a lower [α/Fe] ratio. While the DTD alone cannot explain the observed bimodality in the [α/Fe] distribution, in combination with an appropriate star formation history it affects the goodness of fit between the predicted and observed high-αsequence. Our model results favor an extended DTD with fewer prompt SNe Ia than the fiducialt−1power law.

     
    more » « less
  4. ABSTRACT We develop a hybrid model of galactic chemical evolution that combines a multiring computation of chemical enrichment with a prescription for stellar migration and the vertical distribution of stellar populations informed by a cosmological hydrodynamic disc galaxy simulation. Our fiducial model adopts empirically motivated forms of the star formation law and star formation history, with a gradient in outflow mass loading tuned to reproduce the observed metallicity gradient. With this approach, the model reproduces many of the striking qualitative features of the Milky Way disc’s abundance structure: (i) the dependence of the [O/Fe]–[Fe/H] distribution on radius Rgal and mid-plane distance |z|; (ii) the changing shapes of the [O/H] and [Fe/H] distributions with Rgal and |z|; (iii) a broad distribution of [O/Fe] at sub-solar metallicity and changes in the [O/Fe] distribution with Rgal, |z|, and [Fe/H]; (iv) a tight correlation between [O/Fe] and stellar age for [O/Fe] > 0.1; (v) a population of young and intermediate-age α-enhanced stars caused by migration-induced variability in the Type Ia supernova rate; (vi) non-monotonic age–[O/H] and age–[Fe/H] relations, with large scatter and a median age of ∼4 Gyr near solar metallicity. Observationally motivated models with an enhanced star formation rate ∼2 Gyr ago improve agreement with the observed age–[Fe/H] and age–[O/H] relations, but worsen agreement with the observed age–[O/Fe] relation. None of our models predict an [O/Fe] distribution with the distinct bimodality seen in the observations, suggesting that more dramatic evolutionary pathways are required. All code and tables used for our models are publicly available through the Versatile Integrator for Chemical Evolution (VICE; https://pypi.org/project/vice). 
    more » « less
  5. ABSTRACT

    We present novel constraints on the underlying galaxy formation physics (e.g. mass-loading factor, star formation history, and metal retention) at z ≳ 7 for the low-mass (M* ∼ 105 M⊙) Local Group ultrafaint dwarf galaxy (UFD) Eridanus ii (Eri ii). Using a hierarchical Bayesian framework, we apply a one-zone chemical evolution model to Eri ii’s CaHK-based photometric metallicity distribution function (MDF; [Fe/H]) and find that the evolution of Eri ii is well characterized by a short, exponentially declining star formation history ($\tau _\text{SFH}=0.39\pm _{0.13}^{0.18}$ Gyr), a low star formation efficiency ($\tau _\text{SFE}=27.56\pm _{12.92}^{25.14}$ Gyr), and a large mass-loading factor ($\eta =194.53\pm _{42.67}^{33.37}$). Our results are consistent with Eri ii forming the majority of its stars before the end of reionization. The large mass-loading factor implies strong outflows in the early history of Eri ii and is in good agreement with theoretical predictions for the mass scaling of galactic winds. It also results in the ejection of >90 per cent of the metals produced in Eri ii. We make predictions for the distribution of [Mg/Fe]–[Fe/H] in Eri ii as well as the prevalence of ultra metal-poor stars, both of which can be tested by future chemical abundance measurements. Spectroscopic follow-up of the highest metallicity stars in Eri ii ([Fe/H] > −2) will greatly improve model constraints. Our new framework can readily be applied to all UFDs throughout the Local Group, providing new insights into the underlying physics governing the evolution of the faintest galaxies in the reionization era.

     
    more » « less