skip to main content


Search for: All records

Creators/Authors contains: "Plavchan, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    AU Microscopii (AU Mic) is an active 24 ± 3 Myr pre-main-sequence M dwarf in the stellar neighborhood (d= 9.7 pc) with a rotation period of 4.86 days. The two transiting planets orbiting AU Mic, AU Mic b and c, are warm sub-Neptunes on 8.5 and 18.9 day periods and are targets of interest for atmospheric observations of young planets. Here we study AU Mic’s unocculted starspots using ground-based photometry and spectra in order to complement current and future transmission spectroscopy of its planets. We gathered multicolor Las Cumbres Observatory (LCO) 0.4 m SBIG photometry to study the star's rotational modulations and LCO Network of Robotic Echelle Spectrographs high-resolution spectra to measure the different spectral components within the integrated spectrum of the star, parameterized by three spectral components and their coverage fractions. We find AU Mic’s surface has at least two spectral components: aTamb=400314+15K ambient photosphere and cool spots that have a temperature ofTspot=300371+63K, covering a globally averaged area of 39% ± 4% which increases and decreases by 5.1% ± 0.3% from the average throughout a rotation. We also detect a third flux component with a filling factor less than 0.5% and a largely uncertain temperature between 8500 and 10,000 K that we attribute to flare flux not entirely omitted when time averaging the spectra. We include measurements of spot characteristics using a two-temperature model, which we find agree strongly with the three-temperature results. Our expanded use of various techniques to study starspots will help us better understand this system and may have applications for interpreting the transmission spectra for exoplanets transiting stars of a wide range of activity levels.

     
    more » « less
  2. Abstract

    We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of7700410+720K, Vmagnitude of 10.51 mag and log(g) of3.9820.065+0.067. The brown dwarf has a mass of22.12.5+2.6MJ, a period of 4.034 days, an eccentricity of0.3410.059+0.054, and a radius of1.2200.071+0.082RJ. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models.

     
    more » « less
  3. Abstract

    Characterizing the masses and orbits of near-Earth-mass planets is crucial for interpreting observations from future direct imaging missions (e.g., HabEx, LUVOIR). Therefore, the Exoplanet Science Strategy report recommended further research so future extremely precise radial velocity surveys could contribute to the discovery and/or characterization of near-Earth-mass planets in the habitable zones of nearby stars prior to the launch of these future imaging missions. Newman et al. (2023) simulated such 10 yr surveys under various telescope architectures, demonstrating they can precisely measure the masses of potentially habitable Earth-mass planets in the absence of stellar variability. Here, we investigate the effect of stellar variability on the signal-to-noise ratio (S/N) of the planet mass measurements in these simulations. We find that correlated noise due to active regions has the largest effect on the observed mass S/N, reducing the S/N by a factor of ∼5.5 relative to the no-variability scenario; granulation reduces by a factor of ∼3, while p-mode oscillations has little impact on the proposed survey strategies. We show that in the presence of correlated noise, 5 cm s−1instrumental precision offers little improvement over 10 cm s−1precision, highlighting the need to mitigate astrophysical variability. With our noise models, extending the survey to 15 yr doubles the number of Earth-analogs with mass S/N > 10, and reaching this threshold for any Earth-analog orbiting a star >0.76Min a 10 yr survey would require an increase in the number of observations per star from that in Newman et al. (2023).

     
    more » « less
  4. Abstract

    Stellar active regions, including spots and faculae, can create radial velocity (RV) signals that interfere with the detection and mass measurements of low-mass exoplanets. In doing so, these active regions affect each spectral line differently, but the origin of these differences is not fully understood. Here we explore how spectral line variability correlated with S-index (Ca H and K emission) is related to the atomic properties of each spectral line. Next, we develop a simple analytic stellar atmosphere model that can account for the largest sources of line variability with S-index. Then, we apply this model to HARPS spectra ofαCen B to explain Feiline depth changes in terms of a disk-averaged temperature difference between active and quiet regions on the visible hemisphere of the star. This work helps establish a physical basis for understanding how stellar activity manifests differently in each spectral line and may help future work mitigating the impact of stellar activity on exoplanet RV surveys.

     
    more » « less
  5. Abstract

    Precise radial velocity (PRV) surveys are important for the search for Earth analogs around nearby bright stars, which induce a small stellar reflex motion with an RV amplitude of ∼10 cm s−1. Detecting such a small RV signal poses challenges to instrumentation, data analysis, and the precision of astrophysical models to mitigate stellar jitter. In this work, we investigate an important component in the PRV error budget—the spectral contamination from the Earth’s atmosphere (tellurics). We characterize the effects of telluric absorption on the RV precision and quantify its contribution to the RV error budget over time and across a wavelength range of 350 nm–2.5μm. We use simulated solar spectra with telluric contamination injected, and we extract the RVs using two commonly adopted algorithms: dividing out a telluric model before performing cross-correlation or forward modeling the observed spectrum incorporating a telluric model. We assume various degrees of cleanness in removing the tellurics. We conclude that the RV errors caused by telluric absorption can be suppressed to close to or even below 1–10 cm s−1in the blue optical region. At red through near-infrared wavelengths, however, the residuals of tellurics can induce an RV error on the meter-per-second level even under the most favorable assumptions for telluric removal, leading to significant systematic noise in the RV time series and periodograms. If the red-optical or near-infrared becomes critical in the mitigation of stellar activity, systematic errors from tellurics can be eliminated with a space mission such as EarthFinder.

     
    more » « less
  6. ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP  = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P  = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P  = 10.261 d, e  = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P  = 10.656 d, e  = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log  g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies. 
    more » « less
  7. null (Ed.)
  8. Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ . 
    more » « less
  9. Abstract

    We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σupper limit ofMP< 7.1MandρP< 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date.

     
    more » « less