skip to main content


Search for: All records

Creators/Authors contains: "Proistosescu, Cristian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)—key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO2forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns. When driven by observed patterns, even high ECS models produce low EffCS values consistent with the observed global warming rate. The inability of CMIP5/6 models to reproduce observed warming patterns thus results in a bias in the modeled relationship between recent global warming and climate sensitivity. Correcting for this bias means that observed warming is consistent with wide ranges of ECS and TCR extending to higher values than previously recognized. These findings are corroborated by energy balance model simulations and coupled model (CESM1-CAM5) simulations that better replicate observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based constraints on ECS, TCR, and projected global warming are biased low. The results reinforce recent findings that the unique pattern of observed warming has slowed global-mean warming over recent decades and that how the pattern will evolve in the future represents a major source of uncertainty in climate projections.

     
    more » « less
    Free, publicly-accessible full text available March 19, 2025
  2. Abstract

    Constraining unforced and forced climate variability impacts interpretations of past climate variations and predictions of future warming. However, comparing general circulation models (GCMs) and last millennium Holocene hydroclimate proxies reveals significant mismatches between simulated and reconstructed low-frequency variability at multidecadal and longer time scales. This mismatch suggests that existing simulations underestimate either external or internal drivers of climate variability. In addition, large differences arise across GCMs in both the magnitude and spatial pattern of low-frequency climate variability. Dynamical understanding of forced and unforced variability is expected to contribute to improved interpretations of paleoclimate variability. To that end, we develop a framework for fingerprinting spatiotemporal patterns of temperature variability in forced and unforced simulations. This framework relies on two frequency-dependent metrics: 1) degrees of freedom (≡N) and 2) spatial coherence. First, we useNand spatial coherence to characterize variability across a suite of both preindustrial control (unforced) and last-millennium (forced) GCM simulations. Overall, we find that, at low frequencies and when forcings are added, regional independence in the climate system decreases, reflected in fewerNand higher coherence between local and global mean surface temperature. We then present a simple three-box moist-static-energy-balance model for temperature variability, which is able to emulate key frequency-dependent behavior in the GCMs. This suggests that temperature variability in the GCM ensemble can be understood through Earth’s energy budget and downgradient energy transport, and allows us to identify sources of polar-amplified variability. Finally, we discuss insights the three-box model can provide into model-to-model GCM differences.

    Significance Statement

    Forced and unforced temperature variability are poorly constrained and understood, particularly that at time scales longer than a decade. Here, we identify key differences in the time scale–dependent behavior of forced and unforced temperature variability using a combination of numerical climate models and principles of downgradient energy transport. This work, and the spatiotemporal characterizations of forced and unforced temperature variability that we generate, will aid in interpretations of proxy-based paleoclimate reconstructions and improve mechanistic understanding of variability.

     
    more » « less
  3. Abstract

    The atmospheric Green's function method is a technique for modeling the response of the atmosphere to changes in the spatial field of surface temperature. While early studies applied this method to changes in atmospheric circulation, it has also become an important tool to understand changes in radiative feedbacks due to evolving patterns of warming, a phenomenon called the “pattern effect.” To better study this method, this paper presents a protocol for creating atmospheric Green's functions to serve as the basis for a model intercomparison project, GFMIP. The protocol has been developed using a series of sensitivity tests performed with the HadAM3 atmosphere‐only general circulation model, along with existing and new simulations from other models. Our preliminary results have uncovered nonlinearities in the response of the atmosphere to surface temperature changes, including an asymmetrical response to warming versus cooling patch perturbations, and a change in the dependence of the response on the magnitude and size of the patches. These nonlinearities suggest that the pattern effect may depend on the heterogeneity of warming as well as its location. These experiments have also revealed tradeoffs in experimental design between patch size, perturbation strength, and the length of control and patch simulations. The protocol chosen on the basis of these experiments balances scientific utility with the simulation time and setup required by the Green's function approach. Running these simulations will further our understanding of many aspects of atmospheric response, from the pattern effect and radiative feedbacks to changes in circulation, cloudiness, and precipitation.

     
    more » « less
  4. null (Ed.)
    Abstract Radiative feedbacks depend on the spatial patterns of sea surface temperature (SST) and thus can change over time as SST patterns evolve—the so-called pattern effect. This study investigates intermodel differences in the magnitude of the pattern effect and how these differences contribute to the spread in effective equilibrium climate sensitivity (ECS) within CMIP5 and CMIP6 models. Effective ECS in CMIP5 estimated from 150-yr-long abrupt4×CO2 simulations is on average 10% higher than that estimated from the early portion (first 50 years) of those simulations, which serves as an analog for historical warming; this difference is reduced to 7% on average in CMIP6. The (negative) net radiative feedback weakens over the course of the abrupt4×CO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this weakening is less dramatic on average in CMIP6. For both ensembles, the total variance in the effective ECS is found to be dominated by the spread in radiative response on fast time scales, rather than the spread in feedback changes. Using Green’s functions derived from two AGCMs shows that the spread in feedbacks on fast time scales may be primarily due to differences in atmospheric model physics, whereas the spread in feedback evolution is primarily governed by differences in SST patterns. Intermodel spread in feedback evolution is well explained by differences in the relative warming in the west Pacific warm-pool regions for the CMIP5 models, but this relation fails to explain differences across the CMIP6 models, suggesting that a stronger sensitivity of extratropical clouds to surface warming may also contribute to feedback changes in CMIP6. 
    more » « less
  5. Abstract. The dynamics of marine-terminating outlet glaciers are of fundamental interest in glaciology and affect mass loss from ice sheets in a warming climate. In this study, we analyze the response of outlet glaciers to different sources of climate forcing. We find that outlet glaciers have a characteristically different transient response to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. A recently developed reduced model represents outlet-glacier dynamics via two widely separated response timescales: a fast response associated with grounding-zone dynamics and a slow response of interior ice. The reduced model is shown to emulate the behavior of a more complex numerical model of ice flow. Together, these models demonstrate that ocean forcing first engages the fast, local response and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. We also demonstrate the importance of the timescales of stochastic forcing for assessing the natural variability in outlet glaciers, highlighting that decadal persistence in ocean variability can affect the behavior of outlet glaciers on centennial and longer timescales. Finally, we show that these transient responses have important implications for attributing observed glacier changes to natural or anthropogenic influences; the future change already committed by past forcing; and the impact of past climate changes on the preindustrial glacier state, against which current and future anthropogenic influences are assessed. 
    more » « less
  6. Abstract

    This study assesses the effective climate sensitivity (EffCS) and transient climate response (TCR) derived from global energy budget constraints within historical simulations of eight CMIP6 global climate models (GCMs). These calculations are enabled by use of the Radiative Forcing Model Intercomparison Project (RFMIP) simulations, which permit accurate quantification of the radiative forcing. Long‐term historical energy budget constraints generally underestimate EffCS from CO2quadrupling and TCR from CO2ramping, owing to changes in radiative feedbacks and changes in ocean heat uptake efficiency. Atmospheric GCMs forced by observed warming patterns produce lower values of EffCS that are more in line with those inferred from observed historical energy budget changes. The differences in the EffCS estimates from historical energy budget constraints of models and observations are traced to discrepancies between modeled and observed historical surface warming patterns.

     
    more » « less