skip to main content


Search for: All records

Creators/Authors contains: "Quintanilla-Terminel, Alejandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, TTm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications. 
    more » « less
  2. Abstract

    We performed a series of extrusion experiments on partially molten samples of forsterite plus 10 vol% of an anorthite‐rich melt to investigate melt segregation in a pipe‐extrusion geometry and test the predictions of two‐phase flow theory with viscous anisotropy. The employed flow geometry has not been experimentally investigated for partially molten rocks; however, numerical solutions for a similar, pipe‐Poiseuille geometry are available. Samples were extruded from a 6‐mm diameter reservoir into a 2‐mm diameter channel under a fixed normal stress at 1350°C and 0.1 MPa. The melt distribution in the channel was subsequently mapped with optical and backscattered electron microscopy and analyzed via quantitative image analysis. Melt segregated from the center toward the outer radius of the channel. The melt fraction at the wall increased with increasing extrusion duration and with increasing shear stress. The melt fraction profiles are parabolic with the melt fraction at the wall reaching 0.17–0.66, values 2 to 16 times higher than at the channel center. Segregation of melt toward the wall of the channel is consistent with base‐state melt segregation as predicted by two‐phase flow theory with viscous anisotropy. However, melt‐rich sheets inclined at a low angle to the wall, which are anticipated from two‐phase flow theory, were not observed, indicating that the compaction length is larger than the channel diameter. The results of our experiments are a test of two‐phase flow theory that includes viscous anisotropy, an essential theoretical frame work needed for modeling large‐scale melt migration and segregation in the upper mantle.

     
    more » « less