skip to main content


Search for: All records

Creators/Authors contains: "Ralph, Paula E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree cropTheobroma cacaoL., as well as four non-cacaoTheobromaspecies, with the goal of identifying genetic elements essential for protection against the oomycete pathogenPhytophthora palmivora.

    Results

    We began by creating a new, highly contiguous genome assembly for theP. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k–900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao’s defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor ofPhytophthora spp.

    Conclusions

    Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance toP. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.

     
    more » « less
  2. Genomic structural variants (SVs) can play important roles in adaptation and speciation. Yet the overall fitness effects of SVs are poorly understood, partly because accurate population-level identification of SVs requires multiple high-quality genome assemblies. Here, we use 31 chromosome-scale, haplotype-resolved genome assemblies ofTheobroma cacao—an outcrossing, long-lived tree species that is the source of chocolate—to investigate the fitness consequences of SVs in natural populations. Among the 31 accessions, we find over 160,000 SVs, which together cover eight times more of the genome than single-nucleotide polymorphisms and short indels (125 versus 15 Mb). Our results indicate that a vast majority of these SVs are deleterious: they segregate at low frequencies and are depleted from functional regions of the genome. We show that SVs influence gene expression, which likely impairs gene function and contributes to the detrimental effects of SVs. We also provide empirical support for a theoretical prediction that SVs, particularly inversions, increase genetic load through the accumulation of deleterious nucleotide variants as a result of suppressed recombination. Despite the overall detrimental effects, we identify individual SVs bearing signatures of local adaptation, several of which are associated with genes differentially expressed between populations. Genes involved in pathogen resistance are strongly enriched among these candidates, highlighting the contribution of SVs to this important local adaptation trait. Beyond revealing empirical evidence for the evolutionary importance of SVs, these 31 de novo assemblies provide a valuable resource for genetic and breeding studies inT.cacao.

     
    more » « less
  3. Abstract Host-specific interactions can maintain genetic and phenotypic diversity in parasites that attack multiple host species. Host diversity, in turn, may promote parasite diversity by selection for genetic divergence or plastic responses to host type. The parasitic weed purple witchweed [ Striga hermonthica (Delile) Benth.] causes devastating crop losses in sub-Saharan Africa and is capable of infesting a wide range of grass hosts. Despite some evidence for host adaptation and host-by- Striga genotype interactions, little is known about intraspecific Striga genomic diversity. Here we present a study of transcriptomic diversity in populations of S. hermonthica growing on different hosts (maize [ Zea mays L.] vs. grain sorghum [ Sorghum bicolor (L.) Moench]). We examined gene expression variation and differences in allelic frequency in expressed genes of aboveground tissues from populations in western Nigeria parasitizing each host. Despite low levels of host-based genome-wide differentiation, we identified a set of parasite transcripts specifically associated with each host. Parasite genes in several different functional categories implicated as important in host–parasite interactions differed in expression level and allele on different hosts, including genes involved in nutrient transport, defense and pathogenesis, and plant hormone response. Overall, we provide a set of candidate transcripts that demonstrate host-specific interactions in vegetative tissues of the emerged parasite S. hermonthica . Our study shows how signals of host-specific processes can be detected aboveground, expanding the focus of host–parasite interactions beyond the haustorial connection. 
    more » « less