skip to main content


Search for: All records

Creators/Authors contains: "Reeves, G. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    Although lagged correlations have suggested influences of solar wind velocity (V) and number density (N), Bz, ultralow frequency (ULF) wave power, and substorms (as measured by the auroral electrojet (AE) index) on MeV electron flux at geosynchronous orbit over an impressive number of hours and days, a satellite's diurnal cycle can inflate correlations, associations between drivers may produce spurious effects, and correlations between all previous time steps may create an appearance of additive influence over many hours. Autoregressive‐moving average transfer function (ARMAX) multiple regressions incorporating previous hours simultaneously can eliminate cycles and assess the impact of parameters, at each hour, while others are controlled. ARMAX influences are an order of magnitude lower than correlations uncorrected for time behavior. Most influence occurs within a few hours, not the many hours suggested by correlation. A log transformation accounts for nonlinearities. Over all hours, solar wind velocity (V) and number density (N) show an initial negative impact, with longer term positive influences over the 9 (V) or 27 (N) hr. Bz is initially a positive influence, with a longer term (6 hr) negative effect. ULF waves impact flux in the first (positive) and second (negative) hour before the flux measurement, with further negative influences in the 12–24 hr before. AE (representing electron injection by substorms) shows only a short term (1 hr) positive influence. However, when only recovery and after‐recovery storm periods are considered (using stepwise regression), there are positive influences of ULF waves, AE, andV, with negative influences ofNand Bz.

     
    more » « less
  3. Abstract

    The properties of traveling kinetic Alfvén waves (KAWs) and their role in energizing electrons in the inner magnetosphere during a geomagnetic storm are examined using measurements from the Van Allen Probes and Gyrofluid‐Kinetic Electron (GKE) model simulations. Traveling KAWs occur in the vicinity of energetic plasma injection fronts in association with magnetic field dipolarizations. The KAWs coincide with energized field‐aligned electrons at energies ≲1 keV. By using observational constraints and incorporating hot and cold electron populations, the GKE simulations are able to reproduce the observed energized electron distribution signatures. The modeling results demonstrate the crucial importance of cold electrons for best observational agreement. The results show that the electron response to KAWs can be substantially different for opposing current regions and are a sensitive function of the cold electron relative density.

     
    more » « less
  4. Abstract

    Using measurements from the Van Allen Probes, we show that field‐aligned fluxes of electrons energized by dispersive Alfvén waves (DAWs) are prominent in the inner magnetosphere during active conditions. These electrons have preferentially field‐aligned anisotropies from 1.2 to>2 at energies ranging from tens of electron volts to several kiloelectron volts (keV), with largest values being coincident with magnetic field dipolarizations. Comparisons reveal that DAW energy densities and Poynting fluxes are strongly correlated with precipitating electron energies and energy fluxes and also O+ion outflow energies. These observations yield empirical inner magnetosphere relations between the DAW and electron inputs and the O+ion outflow response, providing important constraints for models. They also suggest that DAWs play an important role in enhancing field‐aligned electron input into the ionosphere that facilitates the outflow and subsequent energization of O+ions in the wave fields into the inner magnetosphere.

     
    more » « less
  5. Abstract

    Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called “RBSP”) at ~5.8RE, and a THEMIS satellite at ~5.3RE, observed substorm‐related particle injections and local dipolarizations near the central meridian (~22 MLT) of a wedge‐like current system. The large‐scale evolution of the electron and ion (H, He, and O) injections was almost identical at the two RBSP spacecraft with ~0.5REapart. However, the initial short‐timescale particle injections exhibited a striking difference between RBSP‐A and ‐B: RBSP‐B observed an energy dispersionless injection which occurred concurrently with a transient, strong dipolarization front (DF) with a peak‐to‐peak amplitude of ~25 nT over ~25 s; RBSP‐A measured a dispersed/weaker injection with no corresponding DF. The spatiotemporally localized DF was accompanied by an impulsive, westward electric field (~20 mV m−1). The fast, impulsiveE × Bdrift caused the radial transport of the electron and ion injection regions from GEO to ~5.8RE. The penetrating DF fields significantly altered the rapid energy‐ and pitch angle‐dependent flux changes of the electrons and the H and He ions inside GEO. Such flux distributions could reflect the transient DF‐related particle acceleration and/or transport processes occurring inside GEO. In contrast, O ions were little affected by the DF fields.

     
    more » « less
  6. Abstract

    Many factors influence relativistic outer radiation belt electron fluxes, such as waves in the ultralow frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron (EMIC) frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and solar wind inputs. In this work we compared relativistic electron flux poststorm versus prestorm using three methods of analysis: (1) multiple regression to predict flux values following storms, (2) multiple regression to predict the size and direction of the change in electron flux, and (3) multiple logistic regression to predict only the probability of the flux rising or falling. We determined which is the most predictive model and which factors are most influential. We found that a linear regression predicting the difference in prestorm and poststorm flux (Model 2) results in the highest validation correlations. The logistic regression used in Model 3 had slightly weaker predictive abilities than the other two models but had the most value in providing a prediction of the probability of the electron flux increasing after a storm. Of the variables used (ULF Pc5 and VLF, seed electrons, substorm activity, and EMIC waves), the most influential in the final model were ULF Pc5 waves and the seed electrons. IMF Bz, Dst, and solar wind number density, velocity, and pressure did not improve any of the models, and were deemed unnecessary for effective predictions.

     
    more » « less
  7. Abstract

    We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5‐year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation atL > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause the precipitation atL > 5 over 8 h < MLT < 14 h andL > 4 over 14 h < MLT < 20 h. The precipitating energy flux increases with increasing geomagnetic activity, and is typically higher in the plasmaspheric plume than the plasmasphere. The characteristic energy of precipitation increases from ∼20 keV atL = 6–∼100 keV atL = 3, potentially causing the loss of electrons at several hundred keV.

     
    more » « less