skip to main content


Search for: All records

Creators/Authors contains: "Ren, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal nanoparticles of multi-principal element alloys (MPEA) with a single crystalline phase have been synthesized by flash heating/cooling of nanosized metals encapsulated in micelle vesicles dispersed in an oil phase (e.g., cyclohexane). Flash heating is realized by selective absorption of a microwave pulse in metals to rapidly heat metals into uniform melts. The oil phase barely absorbs microwave and maintains the low temperature, which can rapidly quench the high-temperature metal melts to enable the flash cooling process. The precursor ions of four metals, including Au, Pt, Pd, and Cu, can be simultaneously reduced by hydrazine in the aqueous solution encapsulated in the micelle vesicles. The resulting metals efficiently absorb microwave energy to locally reach a temperature high enough to melt themselves into a uniform mixture. The duration of microwave pulse is crucial to ensure the reduced metals mix uniformly, while the temperature of oil phase is still low to rapidly quench the metals and freeze the single-phase crystalline lattices in alloy nanoparticles. The microwave-enabled flash heating/cooling provides a new method to synthesize single-phase MPEA nanoparticles of many metal combinations when the appropriate water-in-oil micelle systems and the appropriate reduction reactions of metal precursors are available. 
    more » « less
  2. Abstract

    One of the most challenging aspects of developing high-energy lithium-based batteries is the structural and (electro)chemical stability of Ni-rich active cathode materials at thermally-abused and prolonged cell cycling conditions. Here, we report in situ physicochemical characterizations to improve the fundamental understanding of the degradation mechanism of charged polycrystalline Ni-rich cathodes at elevated temperatures (e.g., ≥ 40 °C). Using multiple microscopy, scattering, thermal, and electrochemical probes, we decouple the major contributors for the thermal instability from intertwined factors. Our research work demonstrates that the grain microstructures play an essential role in the thermal stability of polycrystalline lithium-based positive battery electrodes. We also show that the oxygen release, a crucial process during battery thermal runaway, can be regulated by engineering grain arrangements. Furthermore, the grain arrangements can also modulate the macroscopic crystallographic transformation pattern and oxygen diffusion length in layered oxide cathode materials.

     
    more » « less
  3. The extraordinary performances of phase-coexisting ferroelectrics are significantly affected by not only the phase constitution but also the motion of domain walls. The study on the role of phase coexistence in the formation of ferroelectric and ferroelastic domain microstructures is of great importance to explain the enhanced piezoelectric properties. In situ high-energy diffraction and the Rayleigh law are utilized to reveal the interplay of phase constitution and domain configuration to the macroscopic electromechanical coupling effect in the morphotropic phase boundary composition of 0.365BiScO 3 –0.635PbTiO 3 during the application of a weak electrical loading in the present study. It was found that anisotropic phase transition and domain switching occur in polycrystalline ferroelectric ceramics and a phase transition occurs dramatically beyond the coercive field. Taking into account the important role of coupled ferroelectric and ferroelastic domain microstructures, we conceived a configuration of monoclinic domains coexisting with and bridging the tetragonal domains. The existence of bridging domains would provide an insight into the interplay of the phase and domain and explains the piezoelectric performance in the vicinity of morphotropic phase boundaries. 
    more » « less
  4. Operando synchrotron X-ray diffraction (XRD) studies have not previously been used to directly characterize Li metal in standard batteries due to the extremely weak scattering from Li atoms. In this work, it is demonstrated the stripping and plating of Li metal can be effectively quantified during battery cycling in appropriately designed synchrotron XRD experiments that utilize an anode-free battery configuration in which a Li-containing cathode material of LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) is paired with a bare anode current collector consisting of either Cu metal (Cu/NMC) or Mo metal (Mo/NMC). In this configuration, it is possible to probe local variations in the deposition and stripping of Li metal with sufficient spatial sensitivity to map the inhomogeneity in pouch cells and to follow these processes with sufficient time resolution to track state-of-charge-dependent variations in the rate of Li usage at a single point. For the Cu/NMC and Mo/NMC batteries, it was observed that the initial plating of Li occurred in a very homogeneous manner but that severe macroscopic inhomogeneity arose on a mm-scale during the subsequent stripping of Li, contrasting with the conventional wisdom that the greatest challenges in Li metal batteries are associated with Li deposition. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)