skip to main content


Search for: All records

Creators/Authors contains: "Rohatgi, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Score matching is an alternative to maximum likelihood (ML) for estimating a probability distribution parametrized up to a constant of proportionality. By fitting the ''score'' of the distribution, it sidesteps the need to compute this constant of proportionality (which is often intractable). While score matching and variants thereof are popular in practice, precise theoretical understanding of the benefits and tradeoffs with maximum likelihood---both computational and statistical---are not well understood. In this work, we give the first example of a natural exponential family of distributions such that the score matching loss is computationally efficient to optimize, and has a comparable statistical efficiency to ML, while the ML loss is intractable to optimize using a gradient-based method. The family consists of exponentials of polynomials of fixed degree, and our result can be viewed as a continuous analogue of recent developments in the discrete setting. Precisely, we show: (1) Designing a zeroth-order or first-order oracle for optimizing the maximum likelihood loss is NP-hard. (2) Maximum likelihood has a statistical efficiency polynomial in the ambient dimension and the radius of the parameters of the family. (3) Minimizing the score matching loss is both computationally and statistically efficient, with complexity polynomial in the ambient dimension. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. null (Ed.)
    Generative neural networks have been empirically found very promising in providing effective structural priors for compressed sensing, since they can be trained to span low-dimensional data manifolds in high-dimensional signal spaces. Despite the non-convexity of the resulting optimization problem, it has also been shown theoretically that, for neural networks with random Gaussian weights, a signal in the range of the network can be efficiently, approximately recovered from a few noisy measurements. However, a major bottleneck of these theoretical guarantees is a network expansivity condition: that each layer of the neural network must be larger than the previous by a logarithmic factor. Our main contribution is to break this strong expansivity assumption, showing that constant expansivity suffices to get efficient recovery algorithms, besides it also being information-theoretically necessary. To overcome the theoretical bottleneck in existing approaches we prove a novel uniform concentration theorem for random functions that might not be Lipschitz but satisfy a relaxed notion which we call "pseudo-Lipschitzness." Using this theorem we can show that a matrix concentration inequality known as the Weight Distribution Condition (WDC), which was previously only known to hold for Gaussian matrices with logarithmic aspect ratio, in fact holds for constant aspect ratios too. Since the WDC is a fundamental matrix concentration inequality in the heart of all existing theoretical guarantees on this problem, our tighter bound immediately yields improvements in all known results in the literature on compressed sensing with deep generative priors, including one-bit recovery, phase retrieval, low-rank matrix recovery, and more. 
    more » « less
  3. null (Ed.)
    https://arxiv.org/abs/2007.14539 As in standard linear regression, in truncated linear regression, we are given access to observations (Ai,yi)i whose dependent variable equals yi=ATi⋅x∗+ηi, where x∗ is some fixed unknown vector of interest and ηi is independent noise; except we are only given an observation if its dependent variable yi lies in some "truncation set" S⊂ℝ. The goal is to recover x∗ under some favorable conditions on the Ai's and the noise distribution. We prove that there exists a computationally and statistically efficient method for recovering k-sparse n-dimensional vectors x∗ from m truncated samples, which attains an optimal ℓ2 reconstruction error of O((klogn)/m‾‾‾‾‾‾‾‾‾‾√). As a corollary, our guarantees imply a computationally efficient and information-theoretically optimal algorithm for compressed sensing with truncation, which may arise from measurement saturation effects. Our result follows from a statistical and computational analysis of the Stochastic Gradient Descent (SGD) algorithm for solving a natural adaptation of the LASSO optimization problem that accommodates truncation. This generalizes the works of both: (1) [Daskalakis et al. 2018], where no regularization is needed due to the low-dimensionality of the data, and (2) [Wainright 2009], where the objective function is simple due to the absence of truncation. In order to deal with both truncation and high-dimensionality at the same time, we develop new techniques that not only generalize the existing ones but we believe are of independent interest. 
    more » « less