We provide a computationally and statistically efficient estimator for the classical problem of trun-cated linear regression, where the dependent variabley=wTx+εand its corresponding vector ofcovariatesx∈Rkare only revealed if the dependent variable falls in some subsetS⊆R; otherwisethe existence of the pair(x,y)is hidden. This problem has remained a challenge since the earlyworks of Tobin (1958); Amemiya (1973); Hausman and Wise (1977); Breen et al. (1996), its appli-cations are abundant, and its history dates back even further to the work of Galton, Pearson, Lee,and Fisher Galton (1897); Pearson and Lee (1908); Lee (1914); Fisher (1931). While consistent es-timators of the regression coefficients have been identified, the error rates are not well-understood,especially in high-dimensional settings.Under a “thickness assumption” about the covariance matrix of the covariates in the revealed sample, we provide a computationally efficient estimator for the coefficient vectorwfromnre-vealed samples that attains`2errorO(√k/n), recovering the guarantees of least squares in thestandard (untruncated) linear regression setting. Our estimator uses Projected Stochastic Gradi-ent Descent (PSGD) on the negative log-likelihood of the truncated sample, and only needs ora-cle access to the setS, which may otherwise be arbitrary, and in particular may be non-convex.PSGD must be restricted to an appropriately defined convex cone to guarantee that the negativelog-likelihood is strongly convex, which in turn is established using concentration of matrices onvariables with sub-exponential tails. We perform experiments on simulated data to illustrate the accuracy of our estimator.As a corollary of our work, we show that SGD provably learns the parameters of single-layerneural networks with noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013);Gulcehre et al. (2016), given linearly many, in the number of network parameters, input-outputpairs in the realizable setting.
more »
« less
Truncated Linear Regression in High Dimensions
https://arxiv.org/abs/2007.14539
As in standard linear regression, in truncated linear regression, we are given access to observations (Ai,yi)i whose dependent variable equals yi=ATi⋅x∗+ηi, where x∗ is some fixed unknown vector of interest and ηi is independent noise; except we are only given an observation if its dependent variable yi lies in some "truncation set" S⊂ℝ. The goal is to recover x∗ under some favorable conditions on the Ai's and the noise distribution. We prove that there exists a computationally and statistically efficient method for recovering k-sparse n-dimensional vectors x∗ from m truncated samples, which attains an optimal ℓ2 reconstruction error of O((klogn)/m‾‾‾‾‾‾‾‾‾‾√). As a corollary, our guarantees imply a computationally efficient and information-theoretically optimal algorithm for compressed sensing with truncation, which may arise from measurement saturation effects. Our result follows from a statistical and computational analysis of the Stochastic Gradient Descent (SGD) algorithm for solving a natural adaptation of the LASSO optimization problem that accommodates truncation. This generalizes the works of both: (1) [Daskalakis et al. 2018], where no regularization is needed due to the low-dimensionality of the data, and (2) [Wainright 2009], where the objective function is simple due to the absence of truncation. In order to deal with both truncation and high-dimensionality at the same time, we develop new techniques that not only generalize the existing ones but we believe are of independent interest.
more »
« less
- Award ID(s):
- 1741137
- PAR ID:
- 10228235
- Date Published:
- Journal Name:
- 34th Annual Conference on Neural Information Processing Systems (NeurIPS), NeurIPS 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a computationally and statistically efficient estimator for the classical problem of trun-cated linear regression, where the dependent variabley=wTx+εand its corresponding vector ofcovariatesx∈Rkare only revealed if the dependent variable falls in some subsetS⊆R; otherwisethe existence of the pair(x,y)is hidden. This problem has remained a challenge since the earlyworks of Tobin (1958); Amemiya (1973); Hausman and Wise (1977); Breen et al. (1996), its appli-cations are abundant, and its history dates back even further to the work of Galton, Pearson, Lee,and Fisher Galton (1897); Pearson and Lee (1908); Lee (1914); Fisher (1931). While consistent es-timators of the regression coefficients have been identified, the error rates are not well-understood,especially in high-dimensional settings.Under a “thickness assumption” about the covariance matrix of the covariates in the revealedsample, we provide a computationally efficient estimator for the coefficient vectorwfromnre-vealed samples that attains`2errorO(√k/n), recovering the guarantees of least squares in thestandard (untruncated) linear regression setting. Our estimator uses Projected Stochastic Gradi-ent Descent (PSGD) on the negative log-likelihood of the truncated sample, and only needs ora-cle access to the setS, which may otherwise be arbitrary, and in particular may be non-convex.PSGD must be restricted to an appropriately defined convex cone to guarantee that the negativelog-likelihood is strongly convex, which in turn is established using concentration of matrices onvariables with sub-exponential tails. We perform experiments on simulated data to illustrate theaccuracy of our estimator.As a corollary of our work, we show that SGD provably learns the parameters of single-layerneural networks with noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013);Gulcehre et al. (2016), given linearly many, in the number of network parameters, input-outputpairs in the realizable setting.more » « less
-
The standard linear and logistic regression models assume that the response variables are independent, but share the same linear relationship to their corresponding vectors of covariates. The assumption that the response variables are independent is, however, too strong. In many applications, these responses are collected on nodes of a network, or some spatial or temporal domain, and are dependent. Examples abound in financial and meteorological applications, and dependencies naturally arise in social networks through peer effects. Regression with dependent responses has thus received a lot of attention in the Statistics and Economics literature, but there are no strong consistency results unless multiple independent samples of the vectors of dependent responses can be collected from these models. We present computationally and statistically efficient methods for linear and logistic regression models when the response variables are dependent on a network. Given one sample from a networked linear or logistic regression model and under mild assumptions, we prove strong consistency results for recovering the vector of coefficients and the strength of the dependencies, recovering the rates of standard regression under independent observations. We use projected gradient descent on the negative log-likelihood, or negative log-pseudolikelihood, and establish their strong convexity and consistency using concentration of measure for dependent random variables.more » « less
-
The image processing task of the recovery of an image from a noisy or compromised image is an illposed inverse problem. To solve this problem, it is necessary to incorporate prior information about the smoothness, or the structure, of the solution, by incorporating regularization. Here, we consider linear blur operators with an efficiently-found singular value decomposition. Then, regularization is obtained by employing a truncated singular value expansion for image recovery. In this study, we focus on images for which the image blur operator is separable and can be represented by a Kronecker product such that the associated singular value decomposition is expressible in terms of the singular value decompositions of the separable components. The truncation index k can then be identified without forming the full Kronecker product of the two terms. This report investigates the problem of learning an optimal k using two methods. For one method to learn k we assume the knowledge of the true images, yielding a supervised learning algorithm based on the average relative error. The second method uses the method of generalized cross validation and does not require knowledge of the true images. The approach is implemented and demonstrated to be successful for Gaussian, Poisson and salt and pepper noise types across noise levels with signal to noise ratios as low as 10. This research contributes to the field by offering insights into the use of the supervised and unsupervised estimators for the truncation index, and demonstrates that the unsupervised algorithm is not only robust and computationally efficient, but is also comparable to the supervised method.more » « less
-
Discontinuities can be fairly arbitrary but also cause a significant impact on outcomes in social systems. Indeed, their arbitrariness is why they have been used to infer causal relationships among variables in numerous settings. Regression discontinuity from econometrics assumes the existence of a discontinuous variable that splits the population into distinct partitions to estimate causal effects. Here we consider the design of partitions for a given discontinuous variable to optimize a certain effect. To do so, we propose a quantization-theoretic approach to optimize the effect of interest, first learning the causal effect size of a given discontinuous variable and then applying dynamic programming for optimal quantization design of discontinuities that balance the gain and loss in the effect size. We also develop a computationally-efficient reinforcement learning algorithm for the dynamic programming formulation of optimal quantization. We demonstrate our approach by designing optimal time zone borders for counterfactuals of social capital.more » « less