skip to main content

Title: Truncated Linear Regression in High Dimensions
https://arxiv.org/abs/2007.14539 As in standard linear regression, in truncated linear regression, we are given access to observations (Ai,yi)i whose dependent variable equals yi=ATi⋅x∗+ηi, where x∗ is some fixed unknown vector of interest and ηi is independent noise; except we are only given an observation if its dependent variable yi lies in some "truncation set" S⊂ℝ. The goal is to recover x∗ under some favorable conditions on the Ai's and the noise distribution. We prove that there exists a computationally and statistically efficient method for recovering k-sparse n-dimensional vectors x∗ from m truncated samples, which attains an optimal ℓ2 reconstruction error of O((klogn)/m‾‾‾‾‾‾‾‾‾‾√). As a corollary, our guarantees imply a computationally efficient and information-theoretically optimal algorithm for compressed sensing with truncation, which may arise from measurement saturation effects. Our result follows from a statistical and computational analysis of the Stochastic Gradient Descent (SGD) algorithm for solving a natural adaptation of the LASSO optimization problem that accommodates truncation. This generalizes the works of both: (1) [Daskalakis et al. 2018], where no regularization is needed due to the low-dimensionality of the data, and (2) [Wainright 2009], where the objective function is simple due to the absence of truncation. In order to deal with both truncation more » and high-dimensionality at the same time, we develop new techniques that not only generalize the existing ones but we believe are of independent interest. « less
Authors:
; ;
Award ID(s):
1741137
Publication Date:
NSF-PAR ID:
10228235
Journal Name:
34th Annual Conference on Neural Information Processing Systems (NeurIPS), NeurIPS 2020
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide a computationally and statistically efficient estimator for the classical problem of trun-cated linear regression, where the dependent variabley=wTx+εand its corresponding vector ofcovariatesx∈Rkare only revealed if the dependent variable falls in some subsetS⊆R; otherwisethe existence of the pair(x,y)is hidden. This problem has remained a challenge since the earlyworks of Tobin (1958); Amemiya (1973); Hausman and Wise (1977); Breen et al. (1996), its appli-cations are abundant, and its history dates back even further to the work of Galton, Pearson, Lee,and Fisher Galton (1897); Pearson and Lee (1908); Lee (1914); Fisher (1931). While consistent es-timators of the regression coefficients have been identified, the error rates are not well-understood,especially in high-dimensional settings.Under a “thickness assumption” about the covariance matrix of the covariates in the revealed sample, we provide a computationally efficient estimator for the coefficient vectorwfromnre-vealed samples that attains`2errorO(√k/n), recovering the guarantees of least squares in thestandard (untruncated) linear regression setting. Our estimator uses Projected Stochastic Gradi-ent Descent (PSGD) on the negative log-likelihood of the truncated sample, and only needs ora-cle access to the setS, which may otherwise be arbitrary, and in particular may be non-convex.PSGD must be restricted to an appropriately defined convex cone to guarantee that the negativelog-likelihood is stronglymore »convex, which in turn is established using concentration of matrices onvariables with sub-exponential tails. We perform experiments on simulated data to illustrate the accuracy of our estimator.As a corollary of our work, we show that SGD provably learns the parameters of single-layerneural networks with noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013);Gulcehre et al. (2016), given linearly many, in the number of network parameters, input-outputpairs in the realizable setting.« less
  2. We provide a computationally and statistically efficient estimator for the classical problem of trun-cated linear regression, where the dependent variabley=wTx+εand its corresponding vector ofcovariatesx∈Rkare only revealed if the dependent variable falls in some subsetS⊆R; otherwisethe existence of the pair(x,y)is hidden. This problem has remained a challenge since the earlyworks of Tobin (1958); Amemiya (1973); Hausman and Wise (1977); Breen et al. (1996), its appli-cations are abundant, and its history dates back even further to the work of Galton, Pearson, Lee,and Fisher Galton (1897); Pearson and Lee (1908); Lee (1914); Fisher (1931). While consistent es-timators of the regression coefficients have been identified, the error rates are not well-understood,especially in high-dimensional settings.Under a “thickness assumption” about the covariance matrix of the covariates in the revealedsample, we provide a computationally efficient estimator for the coefficient vectorwfromnre-vealed samples that attains`2errorO(√k/n), recovering the guarantees of least squares in thestandard (untruncated) linear regression setting. Our estimator uses Projected Stochastic Gradi-ent Descent (PSGD) on the negative log-likelihood of the truncated sample, and only needs ora-cle access to the setS, which may otherwise be arbitrary, and in particular may be non-convex.PSGD must be restricted to an appropriately defined convex cone to guarantee that the negativelog-likelihood is strongly convex,more »which in turn is established using concentration of matrices onvariables with sub-exponential tails. We perform experiments on simulated data to illustrate theaccuracy of our estimator.As a corollary of our work, we show that SGD provably learns the parameters of single-layerneural networks with noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013);Gulcehre et al. (2016), given linearly many, in the number of network parameters, input-outputpairs in the realizable setting.« less
  3. We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements [n]={1,...,n} with corresponding data values x1,...,xn. We observe the values for a "sample" set A \subset [n] and wish to estimate some statistic of the values for a "target" set B \subset [n] where B could be the entire set. Crucially, we assume that the sets A and B are drawn according to some known distribution P over pairs of subsets of [n]. A given estimation algorithm is evaluated based on its "worst-case, expected error" where the expectation is with respect to the distribution P from which the sample A and target sets B are drawn, and the worst-case is with respect to the data values x1,...,xn. Within this framework, we give an efficient algorithm for estimating the target mean that returns a weighted combination of the sample values–-where the weights are functions of the distribution P and the sample and target sets A, B--and show that the worst-case expected error achieved by this algorithm is at most a multiplicative pi/2 factor worse than the optimal of such algorithms.more »The algorithm and proof leverage a surprising connection to the Grothendieck problem. We also extend these results to the linear regression setting where each datapoint is not a scalar but a labeled vector (xi,yi). This framework, which makes no distributional assumptions on the data values but rather relies on knowledge of the data collection process via the distribution P, is a significant departure from the typical statistical estimation framework and introduces a uniform analysis for the many natural settings where membership in a sample may be correlated with data values, such as when individuals are recruited into a sample through their social networks as in "snowball/chain" sampling or when samples have chronological structure as in "selective prediction".« less
  4. We consider the problem of accurately recovering a matrix B of size M by M, which represents a probability distribution over M^2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Many aspects of this problem---both in terms of learning and property testing/estimation and on both the algorithmic and information theoretic sides---remain open. Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient (and practically viable) algorithm that accurately recovers the underlying M by M matrix using O(M) samples} (where we assume the rank is a constant).more »This linear sample complexity is optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. Additionally, we provide an even stronger lower bound showing that distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by a well-conditioned Hidden Markov Model with two hidden states requires Omega(M) observations, while our positive results for recovering B immediately imply that Omega(M) observations suffice to learn such an HMM. This lower bound precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs.« less
  5. Abstract

    Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown non-decreasing regression function $f$ from independent pairs $(x_i, y_i)$ where ${\mathbb{E}}[y_i]=f(x_i), i=1, \ldots n$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart, where one is given only the unordered sets $\{x_1, \ldots , x_n\}$ and $\{y_1, \ldots , y_n\}$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $y_i$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.