skip to main content


Search for: All records

Creators/Authors contains: "Shipp, Nora"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Hercules ultrafaint dwarf galaxy (UFD) has long been hypothesized to be tidally disrupting, yet no conclusive evidence has been found for tidal disruption owing partly to difficulties in identifying Hercules member stars. In this work, we present a homogeneous reanalysis of new and existing observations of Hercules, including the detection of a new potential member star located ∼1° (∼1.7 kpc) west of the center of the system. In addition to measuring the line-of-sight velocity gradient, we compare predictions from dynamical models of stream formation to these observations. We report an updated velocity dispersion measurement based on 28 stars,1.90.6+0.6km s−1, which is significantly lower than previous measurements. We find that the line-of-sight velocity gradient is1.81.8+1.8km s−1kpc along the major axis of Hercules, consistent with zero within 1σ. Our dynamical models of stream formation, on the other hand, can reproduce the morphology of the Hercules UFD, specifically the misalignment between the elongation and the orbital motion direction. Additionally, these dynamical models indicate that any radial velocity gradient from tidal disruption would be too small,0.000.91+0.97km s−1kpc, to be detectable with current sample sizes. Combined with our analysis of the tidal radius evolution of the system as a function of its orbital phase, we argue that it is likely that Hercules is indeed currently undergoing tidal disruption in its extended stellar halo with a line-of-sight velocity gradient too small to be detected with current observational data sets.

     
    more » « less
  2. Abstract We present the first detailed comparison of populations of dwarf galaxy stellar streams in cosmological simulations and the Milky Way. In particular, we compare streams identified around 13 Milky Way analogs in the FIRE-2 simulations to streams observed by the Southern Stellar Stream Spectroscopic Survey ( S 5 ). For an accurate comparison, we produce mock Dark Energy Survey (DES) observations of the FIRE streams and estimate the detectability of their tidal tails and progenitors. The number and stellar mass distributions of detectable stellar streams is consistent between observations and simulations. However, there are discrepancies in the distributions of pericenters and apocenters, with the detectable FIRE streams, on average, forming at larger pericenters (out to >110 kpc) and surviving only at larger apocenters (≳40 kpc) than those observed in the Milky Way. We find that the population of high-stellar-mass dwarf galaxy streams in the Milky Way is incomplete. Interestingly, a large fraction of the FIRE streams would only be detected as intact satellites in DES-like observations, since their tidal tails have too low surface brightness to be detectable. We thus predict a population of yet-undetected tidal tails around Milky Way satellites, as well as a population of fully undetected low-surface-brightness stellar streams, and estimate their detectability with the Rubin Observatory. Finally, we discuss the causes and implications of the discrepancies between the stream populations in FIRE and the Milky Way, and explore future avenues for tests of satellite disruption in cosmological simulations. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024
  3. ABSTRACT

    We present a 6D map of the Orphan–Chenab (OC) stream by combining the data from Southern Stellar Stream Spectroscopic Survey (S5) and Gaia. We reconstruct the proper motion, radial velocity, distance, on-sky track, and stellar density along the stream with spline models. The stream has a total luminosity of MV = −8.2 and metallicity of [Fe/H] = −1.9, similar to classical Milky Way (MW) satellites like Draco. The stream shows drastic changes in its physical width varying from 200 pc to 1 kpc, but a constant line-of-sight velocity dispersion of 5 $\mathrm{km\, s^{-1}}$. Despite the large apparent variation in the stellar number density along the stream, the flow rate of stars along the stream is remarkably constant. We model the 6D stream track by a Lagrange-point stripping method with a flexible MW potential in the presence of a moving extended Large Magellanic Cloud (LMC). This allows us to constrain the mass profile of the MW within the distance range 15.6 < r < 55.5 kpc, with the best measured enclosed mass of $(2.85\pm 0.1)\times 10^{11}\, \mathrm{\, M_\odot }$ within 32.4 kpc. Our stream measurements are highly sensitive to the LMC mass profile with the most precise measurement of its enclosed mass made at 32.8 kpc, $(7.02\pm 0.9)\times 10^{10}\, {\rm M}_\odot$. We also detect that the LMC dark matter halo extends to at least 53 kpc. The fitting of the OC stream allows us to constrain the past LMC trajectory and the degree of dynamical friction it experienced. We demonstrate that the stars in the OC stream show large energy and angular momentum spreads caused by LMC perturbation.

     
    more » « less
  4. Abstract We report the kinematic, orbital, and chemical properties of 12 stellar streams with no evident progenitors using line-of-sight velocities and metallicities from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), proper motions from Gaia EDR3, and distances derived from distance tracers or the literature. This data set provides the largest homogeneously analyzed set of streams with full 6D kinematics and metallicities. All streams have heliocentric distances between ∼10 and 50 kpc. The velocity and metallicity dispersions show that half of the stream progenitors were disrupted dwarf galaxies (DGs), while the other half originated from disrupted globular clusters (GCs), hereafter referred to as DG and GC streams. Based on the mean metallicities of the streams and the mass–metallicity relation, the luminosities of the progenitors of the DG streams range between those of Carina and Ursa Major I (−9.5 ≲ M V ≲ −5.5). Four of the six GC streams have mean metallicities of [Fe/H] < −2, more metal poor than typical Milky Way (MW) GCs at similar distances. Interestingly, the 300S and Jet GC streams are the only streams on retrograde orbits in our dozen-stream sample. Finally, we compare the orbital properties of the streams with known DGs and GCs in the MW, finding several possible associations. Some streams appear to have been accreted with the recently discovered Gaia–Enceladus–Sausage system, and others suggest that GCs were formed in and accreted together with the progenitors of DG streams whose stellar masses are similar to those of Draco to Carina (∼10 5 –10 6 M ⊙ ). 
    more » « less
  5. Abstract Stellar streams are excellent probes of the underlying gravitational potential in which they evolve. In this work, we fit dynamical models to five streams in the Southern Galactic hemisphere, combining observations from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), Gaia EDR3, and the Dark Energy Survey, to measure the mass of the Large Magellanic Cloud (LMC). With an ensemble of streams, we find a mass of the LMC ranging from ∼14–19 × 10 10 M ⊙ , probed over a range of closest approach times and distances. With the most constraining stream (Orphan–Chenab), we measure an LMC mass of 18.8 − 4.0 + 3.5 × 10 10 M ⊙ , probed at a closest approach time of 310 Myr and a closest approach distance of 25.4 kpc. This mass is compatible with previous measurements, showing that a consistent picture is emerging of the LMC’s influence on structures in the Milky Way. Using this sample of streams, we find that the LMC’s effect depends on the relative orientation of the stream and LMC at their point of closest approach. To better understand this, we present a simple model based on the impulse approximation and we show that the LMC’s effect depends both on the magnitude of the velocity kick imparted to the stream and the direction of this kick. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Abstract We present the serendipitous discovery of the fastest Main Sequence hyper-velocity star (HVS) by the Southern Stellar Stream Spectroscopic Survey (S5). The star S5-HVS1 is a ∼2.35 M⊙ A-type star located at a distance of ∼9 kpc from the Sun and has a heliocentric radial velocity of 1017 ± 2.7  km s−1 without any signature of velocity variability. The current 3-D velocity of the star in the Galactic frame is 1755 ± 50  km s−1. When integrated backwards in time, the orbit of the star points unambiguously to the Galactic Centre, implying that S5-HVS1 was kicked away from Sgr A* with a velocity of ∼1800  km s−1 and travelled for 4.8 Myr to its current location. This is so far the only HVS confidently associated with the Galactic Centre. S5-HVS1 is also the first hyper-velocity star to provide constraints on the geometry and kinematics of the Galaxy, such as the Solar motion Vy, ⊙ = 246.1 ± 5.3  km s−1 or position R0 = 8.12 ± 0.23 kpc. The ejection trajectory and transit time of S5-HVS1 coincide with the orbital plane and age of the annular disk of young stars at the Galactic centre, and thus may be linked to its formation. With the S5-HVS1 ejection velocity being almost twice the velocity of other hyper-velocity stars previously associated with the Galactic Centre, we question whether they have been generated by the same mechanism or whether the ejection velocity distribution has been constant over time. 
    more » « less