skip to main content


Search for: All records

Creators/Authors contains: "Si Zhang, Hanghang Tong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Finding node associations across different networks is the cornerstone behind a wealth of high-impact data mining applications. Traditional approaches are often, explicitly or implicitly, built upon the linearity and/or consistency assumptions. On the other hand, the recent network embedding based methods promise a natural way to handle the non-linearity, yet they could suffer from the disparate node embedding space of different networks. In this paper, we address these limitations and tackle cross-network node associations from a new angle, i.e., cross-network transformation. We ask a generic question: Given two different networks, how can we transform one network to another? We propose an end-to-end model that learns a composition of nonlinear operations so that one network can be transformed to another in a hierarchical manner. The proposed model bears three distinctive advantages. First (composite transformation), it goes beyond the linearity/consistency assumptions and performs the cross-network transformation through a composition of nonlinear computations. Second (representation power), it can learn the transformation of both network structures and node attributes at different resolutions while identifying the cross-network node associations. Third (generality), it can be applied to various tasks, including network alignment, recommendation, cross-layer dependency inference. Extensive experiments on different tasks validate and verify the effectiveness of the proposed model. 
    more » « less
  2. Graph-structured data naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However, graph mining is a challenging task due to the underlying complex and diverse connectivity patterns. A potential solution is to learn the representation of a graph in a low-dimensional Euclidean space via embedding techniques that preserve the graph properties. Although tremendous efforts have been made to address the graph representation learning problem, many of them still suffer from their shallow learning mechanisms. On the other hand, deep learning models on graphs have recently emerged in both machine learning and data mining areas and demonstrated superior performance for various problems. In this survey, we conduct a comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models. We first introduce two taxonomies to group the existing works based on the types of convolutions and the areas of applications, then highlight some graph convolutional network models in details. Finally, we present several challenges in this area and discuss potential directions for future research. 
    more » « less