skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: NetTrans: Neural Cross-Network Transformation
Finding node associations across different networks is the cornerstone behind a wealth of high-impact data mining applications. Traditional approaches are often, explicitly or implicitly, built upon the linearity and/or consistency assumptions. On the other hand, the recent network embedding based methods promise a natural way to handle the non-linearity, yet they could suffer from the disparate node embedding space of different networks. In this paper, we address these limitations and tackle cross-network node associations from a new angle, i.e., cross-network transformation. We ask a generic question: Given two different networks, how can we transform one network to another? We propose an end-to-end model that learns a composition of nonlinear operations so that one network can be transformed to another in a hierarchical manner. The proposed model bears three distinctive advantages. First (composite transformation), it goes beyond the linearity/consistency assumptions and performs the cross-network transformation through a composition of nonlinear computations. Second (representation power), it can learn the transformation of both network structures and node attributes at different resolutions while identifying the cross-network node associations. Third (generality), it can be applied to various tasks, including network alignment, recommendation, cross-layer dependency inference. Extensive experiments on different tasks validate and verify the effectiveness of the proposed model.  more » « less
Award ID(s):
1939725 1947135 1715385
Author(s) / Creator(s):
Date Published:
Journal Name:
KDD '20: Proceedings of the 26th ACM SIGKKDD International Conference on Knowledge Discovery & Data Mining
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Multiple networks emerge in a wealth of high-impact applications. Network alignment, which aims to find the node correspondence across different networks, plays a fundamental role for many data mining tasks. Most of the existing methods can be divided into two categories: (1) consistency optimization based methods, which often explicitly assume the alignment to be consistent in terms of neighborhood topology and attribute across networks, and (2) network embedding based methods which learn low-dimensional node embedding vectors to infer alignment. In this paper, by analyzing certain methods of these two categories, we show that (1) the consistency optimization based methods are essentially specific random walk propagations from anchor links that might be restrictive; (2) the embedding based methods no longer explicitly assume alignment consistency but inevitably suffer from the space disparity issue. To overcome these two limitations, we bridge these methods and propose a novel family of network alignment algorithms BRIGHT to handle both non-attributed and attributed networks. Specifically, it constructs a space by random walk with restart (RWR) whose bases are one-hot encoding vectors of anchor nodes, followed by a shared linear layer. Our experiments on real-world networks show that the proposed family of algorithms BRIGHT outperform the state-of-the- arts for both non-attributed and attributed network alignment tasks. 
    more » « less
  2. Network embedding has been an effective tool to analyze heterogeneous networks (HNs) by representing nodes in a low-dimensional space. Although many recent methods have been proposed for representation learning of HNs, there is still much room for improvement. Random walks based methods are currently popular methods to learn network embedding; however, they are random and limited by the length of sampled walks, and have difculty capturing network structural information. Some recent researches proposed using meta paths to express the sample relationship in HNs. Another popular graph learning model, the graph convolutional network (GCN) is known to be capable of better exploitation of network topology, but the current design of GCN is intended for homogenous networks. This paper proposes a novel combination of meta-graph and graph convolution, the meta-graph based graph convolutional networks (MGCN). To fully capture the complex long semantic information, MGCN utilizes different meta-graphs in HNs. As different meta-graphs express different semantic relationships, MGCN learns the weights of different meta-graphs to make up for the loss of semantics when applying GCN. In addition, we improve the current convolution design by adding node self-signicance. To validate our model in learning feature representation, we present comprehensive experiments on four real-world datasets and two representation tasks: classication and link prediction. WMGCN's representations can improve accuracy scores by up to around 10% in comparison to other popular representation learning models. What's more, WMGCN'feature learning outperforms other popular baselines. The experimental results clearly show our model is superior over other state-of-the-art representation learning algorithms. 
    more » « less
  3. Network alignment is a fundamental task in many high-impact applications. Most of the existing approaches either explicitly or implicitly consider the alignment matrix as a linear transformation to map one network to another, and might overlook the complicated alignment relationship across networks. On the other hand, node representation learning based alignment methods are hampered by the incomparability among the node representations of different networks. In this paper, we propose a unified semi-supervised deep model (ORIGIN) that simultaneously finds the non-rigid network alignment and learns node representations in multiple networks in a mutually beneficial way. The key idea is to learn node representations by the effective graph convolutional networks, which subsequently enable us to formulate network alignment as a point set alignment problem. The proposed method offers two distinctive advantages. First (node representations), unlike the existing graph convolutional networks that aggregate the node information within a single network, we can effectively aggregate the auxiliary information from multiple sources, achieving far-reaching node representations. Second (network alignment), guided by the highquality node representations, our proposed non-rigid point set alignment approach overcomes the bottleneck of the linear transformation assumption. We conduct extensive experiments that demonstrate the proposed non-rigid alignment method is (1) effective, outperforming both the state-of-the-art linear transformation-based methods and node representation based methods, and (2) efficient, with a comparable computational time between the proposed multi-network representation learning component and its single-network counterpart. 
    more » « less
  4. Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework MrMine to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficient and scalable, with a O(nlog(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks. 
    more » « less
  5. Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework. 
    more » « less