skip to main content


Search for: All records

Creators/Authors contains: "Sims, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The observation ofγrays from the decay of44Ti in the remnants of core-collapse supernovae (CCSNe) provides crucial information regarding the nucleosynthesis occurring in these events, as44Ti production is sensitive to CCSNe conditions. The final abundance of44Ti is also sensitive to specific nuclear input parameters, one of which is the57Ni(p,γ)58Cu reaction rate. A precise rate for57Ni(p,γ)58Cu is thus critical if44Ti production is to be an effective probe into CCSNe. To experimentally constrain the57Ni(p,γ)58Cu rate, the structure properties of58Cu were measured via the58Ni(3He,t)58Cu*(γ) reaction using GODDESS (GRETINA ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory’s ATLAS facility. Details of the experiment, ongoing analysis, and plans are presented.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. The gap between research in academia and industry is narrowing as collaboration between the two becomes critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of topology optimization, San Francisco State University and the University of South Carolina collaborated with ARUP, a world leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly used industry software programs and provide a user-friendly and automated solution to perform topology optimization. ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a project. With developed platform, a high-rise building design from the literature was first adopted to validate the results from ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent process. 
    more » « less
  3. null (Ed.)