skip to main content


Search for: All records

Creators/Authors contains: "Song, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The quality of solar images plays an important role in the analysis of small events in solar physics. Therefore, the improvement of image resolution based on super-resolution (SR) reconstruction technology has aroused the interest of many researchers. In this paper, an improved conditional denoising diffusion probability model (ICDDPM) based on the Markov chain is proposed for the SR reconstruction of solar images. This method reconstructs high-resolution (HR) images from low-resolution images by learning a reverse process that adds noise to HR images. To verify the effectiveness of the method, images from the Goode Solar Telescope at the Big Bear Solar Observatory and the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory are used to train a network, and the spatial resolution of reconstructed images is 4 times that of the original HMI images. The experimental results show that the performance based on ICDDPM is better than the previous work in subject judgment and object evaluation indexes. The reconstructed images of this method have higher subjective vision quality and better consistency with the HMI images. And the structural similarity and rms index results are also higher than the compared method, demonstrating the success of the resolution improvement using ICDDPM. 
    more » « less
  2. Abstract In recent years, the new physics of the Sun has been revealed using advanced data with high spatial and temporal resolutions. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory has accumulated abundant observation data for the study of solar activity with sufficient cadence, but their spatial resolution (about 1″) is not enough to analyze the subarcsecond structure of the Sun. On the other hand, high-resolution observation from large-aperture ground-based telescopes, such as the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory, can achieve a much higher resolution on the order of 0.″1 (about 70 km). However, these high-resolution data only became available in the past 10 yr, with a limited time period during the day and with a very limited field of view. The Generative Adversarial Network (GAN) has greatly improved the perceptual quality of images in image translation tasks, and the self-attention mechanism can retrieve rich information from images. This paper uses HMI and GST images to construct a precisely aligned data set based on the scale-invariant feature transform algorithm and t0 reconstruct the HMI continuum images with four times better resolution. Neural networks based on the conditional GAN and self-attention mechanism are trained to restore the details of solar active regions and to predict the reconstruction error. The experimental results show that the reconstructed images are in good agreement with GST images, demonstrating the success of resolution improvement using machine learning. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin αIIbβ3receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin αIIbβ3receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.

     
    more » « less
  6. Plants balance their competing requirements for growth and stress tolerance via a sophisticated regulatory circuitry that controls responses to the external environments. We have identified a plant-specific gene, COST1 ( constitutively stressed 1 ), that is required for normal plant growth but negatively regulates drought resistance by influencing the autophagy pathway. An Arabidopsis thaliana cost1 mutant has decreased growth and increased drought tolerance, together with constitutive autophagy and increased expression of drought-response genes, while overexpression of COST1 confers drought hypersensitivity and reduced autophagy. The COST1 protein is degraded upon plant dehydration, and this degradation is reduced upon treatment with inhibitors of the 26S proteasome or autophagy pathways. The drought resistance of a cost1 mutant is dependent on an active autophagy pathway, but independent of other known drought signaling pathways, indicating that COST1 acts through regulation of autophagy. In addition, COST1 colocalizes to autophagosomes with the autophagosome marker ATG8e and the autophagy adaptor NBR1, and affects the level of ATG8e protein through physical interaction with ATG8e, indicating a pivotal role in direct regulation of autophagy. We propose a model in which COST1 represses autophagy under optimal conditions, thus allowing plant growth. Under drought, COST1 is degraded, enabling activation of autophagy and suppression of growth to enhance drought tolerance. Our research places COST1 as an important regulator controlling the balance between growth and stress responses via the direct regulation of autophagy. 
    more » « less