skip to main content


Title: Improving the Spatial Resolution of Solar Images Using Generative Adversarial Network and Self-attention Mechanism*
Abstract In recent years, the new physics of the Sun has been revealed using advanced data with high spatial and temporal resolutions. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory has accumulated abundant observation data for the study of solar activity with sufficient cadence, but their spatial resolution (about 1″) is not enough to analyze the subarcsecond structure of the Sun. On the other hand, high-resolution observation from large-aperture ground-based telescopes, such as the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory, can achieve a much higher resolution on the order of 0.″1 (about 70 km). However, these high-resolution data only became available in the past 10 yr, with a limited time period during the day and with a very limited field of view. The Generative Adversarial Network (GAN) has greatly improved the perceptual quality of images in image translation tasks, and the self-attention mechanism can retrieve rich information from images. This paper uses HMI and GST images to construct a precisely aligned data set based on the scale-invariant feature transform algorithm and t0 reconstruct the HMI continuum images with four times better resolution. Neural networks based on the conditional GAN and self-attention mechanism are trained to restore the details of solar active regions and to predict the reconstruction error. The experimental results show that the reconstructed images are in good agreement with GST images, demonstrating the success of resolution improvement using machine learning.  more » « less
Award ID(s):
1954737 1927578 1821294
NSF-PAR ID:
10314063
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solar Dynamics Observatory (SDO) spacecraft as a space-based project is able to conduct continuous monitoring of the Sun. The Helioseismic and Magnetic Imager (HMI) instrument on SDO, in particular, provides continuum images and magnetograms with a cadence of under 1 minute. SDO/HMI's spatial resolution is only about 1'', which makes it impossible to perform a good analysis on the subarcsecond scale. On the other hand, larger aperture ground-based telescopes such as the Goode Solar Telescope (GST) at the Big Bear Solar Observatory are able to achieve a better resolution (16 times better than SDO/HMI). However, ground-based telescopes like GST have limitations in terms of observation time, which can only make observations during the day in clearsky condition. The purpose of this study is to make attempts in improving the spatial resolution of images captured by HMI beyond the diffraction limit of the telescope by employing the Conditional Generative Adversarial Networks algorithm (cGAN). The cGAN model was trained using 1800 pairs of HMI and GST sunspot images. This method successfully reconstruct HMI images with a spatial resolution close to GST images, this is supported by \raisebox{-0.5ex}\textasciitilde62\% increase in the peak signal-to-noise ratio (PSNR) value and \raisebox{-0.5ex}\textasciitilde90\% decrease in the mean squared error (MSE) value. The higher resolution sunspot images produced by this model can be useful for further Solar Physics studies. 
    more » « less
  2. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves. 
    more » « less
  3. Solar jets are well-collimated plasma ejections in the solar atmosphere. They are prevalent in active regions, the quiet Sun, and even coronal holes. They display a range of temperatures, yet the nature of the cool components has not been fully investigated. In this paper, we show the existence of the precursors and quasi-periodic properties for two chromospheric jets, mainly utilizing the He  I 10 830 Å narrowband filtergrams taken by the Goode Solar Telescope (GST). The extreme ultraviolet (EUV) counterparts present during the eruption correspond to a blowout jet (jet 1) and a standard jet (jet 2), as observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The high-resolution He  I 10 830 Å observation captures a long-lasting precursor for jet 1, signified by a series of cool ejections. They are recurrent jet-like features with a quasi-period of about five minutes. On the other hand, the cool components of jet 2, recurrently accompanied by EUV emissions, present a quasi-periodic behavior with a period of about five minutes. Both the EUV brightening and He  I 10 830 Å absorption show that there was a precursor for jet 2 that occurred about five minutes before its onset. We propose that the precursor of jet 1 may be the consequence of chromospheric shock waves, since the five-minute oscillation from the photosphere can leak into the chromosphere and develop into shocks. Then, we find that the quasi-periodic behavior of the cool components of jet 2 may be related to magnetic reconnections modulated by the oscillation in the photosphere. 
    more » « less
  4. Abstract The quality of solar images plays an important role in the analysis of small events in solar physics. Therefore, the improvement of image resolution based on super-resolution (SR) reconstruction technology has aroused the interest of many researchers. In this paper, an improved conditional denoising diffusion probability model (ICDDPM) based on the Markov chain is proposed for the SR reconstruction of solar images. This method reconstructs high-resolution (HR) images from low-resolution images by learning a reverse process that adds noise to HR images. To verify the effectiveness of the method, images from the Goode Solar Telescope at the Big Bear Solar Observatory and the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory are used to train a network, and the spatial resolution of reconstructed images is 4 times that of the original HMI images. The experimental results show that the performance based on ICDDPM is better than the previous work in subject judgment and object evaluation indexes. The reconstructed images of this method have higher subjective vision quality and better consistency with the HMI images. And the structural similarity and rms index results are also higher than the compared method, demonstrating the success of the resolution improvement using ICDDPM. 
    more » « less
  5. null (Ed.)
    ABSTRACT We analysed line-of-sight magnetic fields and magnetic power spectra of an undisturbed photosphere using magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamic Observatory and the Near InfraRed Imaging Spectrapolarimeter (NIRIS) operating at the Goode Solar Telescope of the Big Bear Solar Observatory. In the NIRIS data, we revealed thin flux tubes of 200–400 km in diameter and of 1000–2000 G field strength. The HMI power spectra determined for a coronal hole, a quiet sun, and a plage areas exhibit the same spectral index of −1 on a broad range of spatial scales from 10–20 Mm down to 2.4 Mm. This implies that the same mechanism(s) of magnetic field generation operate everywhere in the undisturbed photosphere. The most plausible one is the local turbulent dynamo. When compared to the HMI spectra, the −1.2 slope of the NIRIS spectrum appears to be more extended into the short spatial range until the cut-off at 0.8–0.9 Mm, after which it continues with a steeper slope of −2.2. Comparison of the observed and Kolmogorov-type spectra allowed us to infer that the Kolmogorov turbulent cascade cannot account for more than 35 per cent of the total magnetic energy observed in the scale range of 3.5–0.3 Mm. The energy excess can be attributed to other mechanisms of field generation such as the local turbulent dynamo and magnetic superdiffusivity observed in an undisturbed photosphere that can slow down the rate of the Kolmogorov cascade leading to a shallower resulting spectrum. 
    more » « less