skip to main content


Search for: All records

Creators/Authors contains: "Srinivasan, Aravind"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider a setting inspired by spatial crowdsourcing platforms, where both workers and tasks arrive at different times, and each worker-task assignment yields a given reward. The key challenge is to address the uncertainty in the stochastic arrivals from both workers and the tasks. In this work, we consider a ubiquitous scenario where the arrival patterns of worker “types” and task “types” are not erratic but can be predicted from historical data. Specifically, we consider a finite time horizon T and assume that in each time-step the arrival of a worker and a task can be seen as an independent sample from two (different) distributions. Our model, called "Online Task Assignment with Two-Sided Arrival" (OTA-TSA), is a significant generalization of the classical online task-assignment problem when all the tasks are statically available. For the general case of OTA-TSA, we present an optimal non-adaptive algorithm (NADAP), which achieves a competitive ratio (CR) of at least 0.295. For a special case of OTA-TSA when the reward depends only on the worker type, we present two adaptive algorithms, which achieve CRs of at least 0.343 and 0.355, respectively. On the hardness side, we show that (1) no non-adaptive can achieve a CR larger than that of NADAP, establishing the optimality of NADAP among all non-adaptive algorithms; and (2) no (adaptive) algorithm can achieve a CR better than 0.581 (unconditionally) or 0.423 (conditionally on the benchmark linear program), respectively. All aforementioned negative results apply to even unweighted OTA-TSA when every assignment yields a uniform reward. At the heart of our analysis is a new technical tool, called "two-stage birth-death process", which is a refined notion of the classical birth-death process. We believe it may be of independent interest. Finally, we perform extensive numerical experiments on a real-world ride-share dataset collected in Chicago and a synthetic dataset, and results demonstrate the effectiveness of our proposed algorithms in practice. 
    more » « less
    Free, publicly-accessible full text available March 11, 2025
  2. Free, publicly-accessible full text available February 1, 2025
  3. In e-commerce, customers have an unknown patience in terms of how far down the page they are willing to scroll. In light of this, how should products be ranked? The e-commerce retailer’s problem is further complicated by the fact that the supply of each product may be limited, and that multiple customers who are interested in these products will arrive over time. In “Online Matching Frameworks Under Stochastic Rewards, Product Ranking, and Unknown Patience,” Brubach, Grammel, Ma, and Srinivasan provide a general framework for studying this complicated problem that decouples the product ranking problem for a single customer from the online matching of products to multiple customers over time. They also develop a better algorithm for the single-customer product ranking problem under well-studied cascade-click models. Finally, they introduce a model where the products are also arriving over time and cannot be included in the search rankings until they arrive. 
    more » « less
    Free, publicly-accessible full text available October 27, 2024
  4. Free, publicly-accessible full text available October 17, 2024
  5. Free, publicly-accessible full text available August 19, 2024
  6. Free, publicly-accessible full text available August 6, 2024
  7. Free, publicly-accessible full text available August 4, 2024
  8. In response to COVID-19, many countries have mandated social distancing and banned large group gatherings in order to slow down the spread of SARS-CoV-2. These social interventions along with vaccines remain the best way forward to reduce the spread of SARS CoV-2. In order to increase vaccine accessibility, states such as Virginia have deployed mobile vaccination centers to distribute vaccines across the state. When choosing where to place these sites, there are two important factors to take into account: accessibility and equity. We formulate a combinatorial problem that captures these factors and then develop efficient algorithms with theoretical guarantees on both of these aspects. Furthermore, we study the inherent hardness of the problem, and demonstrate strong impossibility results. Finally, we run computational experiments on real-world data to show the efficacy of our methods. 
    more » « less
    Free, publicly-accessible full text available August 2, 2024
  9. Free, publicly-accessible full text available August 19, 2024