skip to main content


Search for: All records

Creators/Authors contains: "Sushch, I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Supernova remnants (SNRs) are known to accelerate cosmic rays from the detection of non-thermal emission in radio waves, X-rays, and gamma-rays. However, the ability to accelerate cosmic rays up to PeV energies has yet to be demonstrated. The presence of cut-offs in the gamma-ray spectra of several young SNRs led to the idea that PeV energies might only be achieved during the first years of a remnant’s evolution. We use our time-dependent acceleration-code RATPaC to study the acceleration of cosmic rays in supernovae expanding into dense environments around massive stars. We performed spherically symmetric one-dimensional (1D) simulations in which we simultaneously solve the transport equations for cosmic rays, magnetic turbulence, and the hydrodynamical flow of the thermal plasma in the test-particle limit. We investigated typical circumstellar-medium (CSM) parameters expected around red supergiant (RSG) and luminous blue variable (LBV) stars for freely expanding winds and accounted for the strong γγ absorption in the first days after explosion. The maximum achievable particle energy is limited to below $600\,$TeV even for the largest considered values of the magnetic field and mass-loss rates. The maximum energy is not expected to surpass $\approx 200\,$ and $\approx 70\,$TeV for LBVs and RSGs that experience moderate mass-loss prior to the explosion. We find gamma-ray peak-luminosities consistent with current upper limits and evaluate that current-generation instruments are able to detect the gamma-rays from Type-IIP explosions at distances up to $\approx 60\,$ kpc and Type-IIn explosions up to $\approx 1.0\,$ Mpc. We also find a good agreement between the thermal X-ray and radio synchrotron emission predicted by our models with a range of observations.

     
    more » « less
  2. Abstract We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2.°2 away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV γ -ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the γ -ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and γ -ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed γ -ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. The angular size of a star is a critical factor in determining its basic properties. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars’ angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications. 
    more » « less