skip to main content


Search for: All records

Creators/Authors contains: "Tresguerres, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    There is growing concern about the effects of ocean acidification (OA) on coral reefs, with many studies indicating decreasing calcium carbonate production and reef growth. However, to accurately predict how coral reefs will respond to OA, it is necessary to characterize natural carbonate chemistry conditions, including the spatiotemporal mean and variability and the physical and biogeochemical drivers across different environments. In this study, spatial and temporal physiochemical variability was characterized at two contrasting reef locations in Bocas del Toro, Panama, that differed in their benthic community composition, reef morphology, and exposure to open ocean conditions, using a combination of approaches including autonomous sensors and spatial surveys during November 2015. Mean and diurnal temporal variability in both physical and chemical seawater parameters were similar between sites and sampling depths, but with occasional differences in extreme values. The magnitude of spatial variability was different between the two sites, which reflected the cumulative effect from terrestrial runoff and benthic metabolism. Based on graphical vector analysis of TA–DIC data, reef metabolism was dominated by organic over inorganic carbon cycling at both sites, with net heterotrophy and net calcium carbonate dissolution dominating the majority of observations. The results also highlight the potentially strong influence of terrestrial freshwater runoff on surface seawater conditions, and the challenges associated with evaluating and characterizing this influence on benthic habitats. The Bocas del Toro reef is a unique system that deserves attention to better understand the mechanisms that allow corals and coral reefs to persist under increasingly challenging environmental conditions.

     
    more » « less
  2. ABSTRACT The regulation of ionic, osmotic and acid–base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research. 
    more » « less
    Free, publicly-accessible full text available July 15, 2024
  3. Free, publicly-accessible full text available May 25, 2024
  4. Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pH i ) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pH i imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pH i regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pH i regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO 2 -induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal. 
    more » « less
  5. White seabass ( Atractoscion nobilis) increasingly experience periods of low oxygen (O 2 ; hypoxia) and high carbon dioxide (CO 2 , hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O 2 carrier in the blood and in many teleost fishes Hb-O 2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O 2 -carrying capacity during hypoxia and hypercapnia. We determined the O 2 -binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O 2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O 2 affinity (Po 2 at half-saturation; P 50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient −0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHE activity. The activation of RBC β-NHEs increased Hb-O 2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O 2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors. 
    more » « less