skip to main content


Search for: All records

Creators/Authors contains: "Wang, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Kilonovae are optical transients following the merger of neutron star binaries, which are powered by the r-process heating of merger ejecta. However, if a merger remnant is a long-lived supramassive neutron star supported by its uniform rotation, it will inject energy into the ejecta through spin-down power. The energy injection can boost the peak luminosity of a kilonova by many orders of magnitudes, thus significantly increasing the detectable volume. Therefore, even if such events are only a small fraction of the kilonova population, they could dominate the detection rates. However, after many years of optical sky surveys, no such event has been confirmed. In this work, we build a boosted kilonova model with rich physical details, including the description of the evolution and stability of a proto neutron star, and the energy absorption through X-ray photoionization. We simulate the observation prospects and find the only way to match the absence of detection is to limit the energy injection by the newly born magnetar to only a small fraction of the neutron star rotational energy, thus they should collapse soon after the merger. Our result indicates that most supramassive neutron stars resulting from binary neutron star mergers are short lived and they are likely to be rare in the Universe.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. We report a new technique for single-shot quantitative phase retrieval from transparent objects, based on plasmonic metasurface photodetectors featuring an asymmetric angular response around normal incidence combined with a particularly simple optical setup. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract The visualization of pure phase objects by wavefront sensing has important applications ranging from surface profiling to biomedical microscopy, and generally requires bulky and complicated setups involving optical spatial filtering, interferometry, or structured illumination. Here we introduce a new type of image sensors that are uniquely sensitive to the local direction of light propagation, based on standard photodetectors coated with a specially designed plasmonic metasurface that creates an asymmetric dependence of responsivity on angle of incidence around the surface normal. The metasurface design, fabrication, and angle-sensitive operation are demonstrated using a simple photoconductive detector platform. The measurement results, combined with computational imaging calculations, are then used to show that a standard camera or microscope based on these metasurface pixels can directly visualize phase objects without any additional optical elements, with state-of-the-art minimum detectable phase contrasts below 10 mrad. Furthermore, the combination of sensors with equal and opposite angular response on the same pixel array can be used to perform quantitative phase imaging in a single shot, with a customized reconstruction algorithm which is also developed in this work. By virtue of its system miniaturization and measurement simplicity, the phase imaging approach enabled by these devices is particularly significant for applications involving space-constrained and portable setups (such as point-of-care imaging and endoscopy) and measurements involving freely moving objects. 
    more » « less
    Free, publicly-accessible full text available July 27, 2024
  5. Serverless computing has been favored by users and infrastructure providers from various industries, including online services and scientific computing. Users enjoy its auto-scaling and ease-of-management, and providers own more control to optimize their service. However, existing serverless platforms still require users to pre-define resource allocations for their functions, leading to frequent misconfiguration by inexperienced users in practice. Besides, functions' varying input data further escalate the gap between their dynamic resource demands and static allocations, leaving functions either over-provisioned or under-provisioned. This paper presents Libra, a safe and timely resource harvesting framework for multi-node serverless clusters. Libra makes precise harvesting decisions to accelerate function invocations with harvested resources and jointly improve resource utilization by profiling dynamic resource demands and availability proactively. Experiments on OpenWhisk clusters with real-world workloads show that Libra reduces response latency by 39% and achieves 3X resource utilization compared to state-of-the-art solutions. 
    more » « less
    Free, publicly-accessible full text available August 7, 2024
  6. We report the development of angle-sensitive photodetectors based on specially designed metasurfaces that can map the phase distribution of the incident light and visualize transparent phase objects without any external spatial-filtering elements. Pixel arrays of these devices can provide quantitative phase reconstruction in a single shot with state-of-the-art sensitivity. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  7. We report plasmonic metasurface photodetectors featuring a strong asymmetric angular response around normal incidence that can visualize transparent phase objects with high sensitivity in a simple and compact imaging setup.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. Free, publicly-accessible full text available July 1, 2024
  9. We present the method of direct van der Waals simulation (DVS) to study computationally flows with liquid-vapor phase transformations. Our approach is based on a discretization of the Navier-Stokes-Korteweg equations, which couple flow dynamics with van der Waals’ nonequilibrium thermodynamic theory of phase transformations, and opens an opportunity for first-principles simulation of a wide range of boiling and cavitating flows. The proposed algorithm enables unprecedented simulations of the Navier-Stokes-Korteweg equations involving cavitating flows at strongly under-critical conditions and 𝒪(105) Reynolds number. The proposed technique provides a pathway for a fundamental understanding of phase-transforming flows with multiple applications in science, engineering, and medicine.

     
    more » « less