Serverless computing automates fine-grained resource scaling and simplifies the development and deployment of online services with stateless functions. However, it is still non-trivial for users to allocate appropriate resources due to various function types, dependencies, and input sizes. Misconfiguration of resource allocations leaves functions either under-provisioned or over-provisioned and leads to continuous low resource utilization. This paper presents Freyr, a new resource manager (RM) for serverless platforms that maximizes resource efficiency by dynamically harvesting idle resources from over-provisioned functions to under-provisioned functions. Freyr monitors each function’s resource utilization in real-time, detects over-provisioning and under-provisioning, and learns to harvest idle resources safely and accelerates functions efficiently by applying deep reinforcement learning algorithms along with a safeguard mechanism. We have implemented and deployed a Freyr prototype in a 13-node Apache OpenWhisk cluster. Experimental results show that 38.8% of function invocations have idle resources harvested by Freyr, and 39.2% of invocations are accelerated by the harvested resources. Freyr reduces the 99th-percentile function response latency by 32.1% compared to the baseline RMs.
more »
« less
Libra: Harvesting Idle Resources Safely and Timely in Serverless Clusters
Serverless computing has been favored by users and infrastructure providers from various industries, including online services and scientific computing. Users enjoy its auto-scaling and ease-of-management, and providers own more control to optimize their service. However, existing serverless platforms still require users to pre-define resource allocations for their functions, leading to frequent misconfiguration by inexperienced users in practice. Besides, functions' varying input data further escalate the gap between their dynamic resource demands and static allocations, leaving functions either over-provisioned or under-provisioned. This paper presents Libra, a safe and timely resource harvesting framework for multi-node serverless clusters. Libra makes precise harvesting decisions to accelerate function invocations with harvested resources and jointly improve resource utilization by profiling dynamic resource demands and availability proactively. Experiments on OpenWhisk clusters with real-world workloads show that Libra reduces response latency by 39% and achieves 3X resource utilization compared to state-of-the-art solutions.
more »
« less
- Award ID(s):
- 2153502
- PAR ID:
- 10497715
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400701559
- Page Range / eLocation ID:
- 181 to 194
- Format(s):
- Medium: X
- Location:
- Orlando FL USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Serverless computing is a rapidly growing paradigm that easily harnesses the power of the cloud. With serverless computing, developers simply provide an event-driven function to cloud providers, and the provider seamlessly scales function invocations to meet demands as event-triggers occur. As current and future serverless offerings support a wide variety of serverless applications, effective techniques to manage serverless workloads becomes an important issue. This work examines current management and scheduling practices in cloud providers, uncovering many issues including inflated application run times, function drops, inefficient allocations, and other undocumented and unexpected behavior. To fix these issues, a new quality-of-service function scheduling and allocation framework, called Sequoia, is designed. Sequoia allows developers or administrators to easily def ne how serverless functions and applications should be deployed, capped, prioritized, or altered based on easily configured, flexible policies. Results with controlled and realistic workloads show Sequoia seamlessly adapts to policies, eliminates mid-chain drops, reduces queuing times by up to 6.4X, enforces tight chain-level fairness, and improves run-time performance up to 25X.more » « less
-
Serverless computing allows customers to submit their jobs to the cloud for execution, with the resource provisioning being taken care of by the cloud provider. Serverless functions are often short-lived and have modest resource requirements, thereby presenting an opportunity to improve server utilization by colocating with latency-sensitive customer workloads. This paper presents ServerMore, a server-level resource manager that opportunistically colocates customer serverless jobs with serverful customer VMs. ServerMore dynamically regulates the CPU, memory bandwidth, and LLC resources on the server to ensure that the colocation between serverful and serverless workloads does not impact application tail latencies. By selectively admitting serverless functions and inferring the performance of black-box serverful workloads, ServerMore improves resource utilization on average by 35.9% to 245% compared to prior works; while having a minimal impact on the latency of both serverful applications and serverless functions.more » « less
-
null (Ed.)Serverless computing has emerged as a new paradigm for running short-lived computations in the cloud. Due to its ability to handle IoT workloads, there has been considerable interest in running serverless functions at the edge. However, the constrained nature of the edge and the latency sensitive nature of workloads result in many challenges for serverless platforms. In this paper, we present LaSS, a platform that uses model-driven approaches for running latency-sensitive serverless computations on edge resources. LaSS uses principled queuing-based methods to determine an appropriate allocation for each hosted function and auto-scales the allocated resources in response to workload dynamics. LaSS uses a fair-share allocation approach to guarantee a minimum of allocated resources to each function in the presence of overload. In addition, it utilizes resource reclamation methods based on container deflation and termination to reassign resources from over-provisioned functions to under-provisioned ones. We implement a prototype of our approach on an OpenWhisk serverless edge cluster and conduct a detailed experimental evaluation. Our results show that LaSS can accurately predict the resources needed for serverless functions in the presence of highly dynamic workloads, and reprovision container capacity within hundreds of milliseconds while maintaining fair share allocation guarantees.more » « less
-
Serverless computing platforms simplify development, deployment, and automated management of modular software functions. However, existing serverless platforms typically assume an over-provisioned cloud, making them a poor fit for Edge Computing environments where resources are scarce. In this paper we propose a redesigned serverless platform that comprehensively tackles the key challenges for serverless functions in a resource constrained Edge Cloud. Our Mu platform cleanly integrates the core resource management components of a serverless platform: autoscaling, load balancing, and placement. Each worker node in Mu transparently propagates metrics such as service rate and queue length in response headers, feeding this information to the load balancing system so that it can better route requests, and to our autoscaler to anticipate workload fluctuations and proactively meet SLOs. Data from the Autoscaler is then used by the placement engine to account for heterogeneity and fairness across competing functions, ensuring overall resource efficiency, and minimizing resource fragmentation. We implement our design as a set of extensions to the Knative serverless platform and demonstrate its improvements in terms of resource efficiency, fairness, and response time. Evaluating Mu, shows that it improves fairness by more than 2x over the default Kubernetes placement engine, improves 99th percentile response times by 62% through better load balancing, reduces SLO violations and resource consumption by pro-active and precise autoscaling. Mu reduces the average number of pods required by more than ~15% for a set of real Azure workloads.more » « less
An official website of the United States government

