skip to main content


Search for: All records

Creators/Authors contains: "Weller��"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Colour pattern variation provides biological information in fields ranging from disease ecology to speciation dynamics. Comparing colour pattern geometries across images requires colour segmentation, where pixels in an image are assigned to one of a set of colour classes shared by all images. Manual methods for colour segmentation are slow and subjective, while automated methods can struggle with high technical variation in aggregate image sets. We present recolorize, an R package toolbox for human‐subjective colour segmentation with functions for batch‐processing low‐variation image sets and additional tools for handling images from diverse (high‐variation) sources. The package also includes export options for a variety of formats and colour analysis packages. This paper illustrates recolorize for three example datasets, including high variation, batch processing and combining with reflectance spectra, and demonstrates the downstream use of methods that rely on this output.

     
    more » « less
  2. Abstract There is great interest in improving our understanding of the respective roles of the ocean and atmosphere in variability and change in weather and climate. Due to the sparsity of sustained observing sites in the open ocean, information about the air–sea exchanges of heat, freshwater, and momentum is often drawn from models. In this paper observations from three long-term surface moorings deployed in the trade wind regions of the Pacific and Atlantic Oceans are used to compare observed means and low-passed air–sea fluxes from the moorings with coincident records from three atmospheric reanalyses (ERA5, NCEP-2, and MERRA-2) and from CMIP6 coupled models. To set the stage for the comparison, the methodologies of maintaining the long-term surface moorings, known as ocean reference stations (ORS), and assessing the accuracies of their air–sea fluxes are described first. Biases in the reanalyses’ means and low-passed wind stresses and net air–sea heat fluxes are significantly larger than the observational uncertainties and in some case show variability in time. These reanalyses and most CMIP6 models fail to provide as much heat into the ocean as observed. In the discussion and conclusions section, long-term observing sites in the open ocean are seen as essential, independent benchmarks not only to document the coupling between the atmosphere and ocean but also to promote collaborative efforts to assess and improve the ability of models to simulate air–sea fluxes. 
    more » « less
  3. Abstract

    A budget approach is used to disentangle drivers of the seasonal mixed layer carbon cycle at Station ALOHA (A Long‐term Oligotrophic Habitat Assessment) in the North Pacific Subtropical Gyre (NPSG). The budget utilizes data from the WHOTS (Woods Hole—Hawaii Ocean Time‐series Site) mooring, and the ship‐based Hawai'i Ocean Time‐series (HOT) in the NPSG, a region of significant oceanic carbon uptake. Parsing the carbon variations into process components allows an assessment of both the proportional contributions of mixed layer carbon drivers and the seasonal interplay of drawdown and supply from different processes. Annual net community production reported here is at the lower end of previously published data, while net community calcification estimates are 4‐ to 7‐fold higher than available sediment trap data, the only other estimate of calcium carbonate export at this location. Although the observed seasonal cycle in dissolved inorganic carbon in the NPSG has a relatively small amplitude, larger fluxes offset each other over an average year. Major supply comes from physical transport, especially lateral eddy transport throughout the year and entrainment in the winter, offset by biological carbon uptake in the spring. Gas exchange plays a smaller role, supplying carbon to the surface ocean between Dec‐May and outgassing in Jul‐Oct. Evaporation‐precipitation (E‐P) is variable with precipitation prevailing in the first half and evaporation in the second half of the year. The observed total alkalinity signal is largely governed by E‐P with a somewhat stronger net calcification signal in the wintertime.

     
    more » « less
  4. ABSTRACT

    The detection of Intermediate-Mass Black Holes (IMBHs) in dwarf galaxies is crucial to closing the gap in the wide mass distribution of black holes ($\sim 3 \, {\rm M_\odot }$ to $\sim 5 \times 10^{10} \, {\rm M_\odot }$). IMBHs originally located at the centre of dwarfs that later collide with the Milky Way (MW) could be wandering, undetected, in our Galaxy. We used TNG50, the highest resolution run of the IllustrisTNG project, to study the kinematics and dynamics of star clusters, in the appropriate mass range, acting as IMBH proxies in an MW analogue galaxy. We showed that $\sim 87{{\ \rm per\ cent}}$ of our studied IMBHs drift inward. The radial velocity of these sinking IMBHs has a median magnitude of $\sim 0.44 \, \mathrm{ckpc \, h^{-1} \, Gyr^{-1}}$ and no dependence on the black hole mass. The central $1 \, \rm ckpc \, h^{-1}$ has the highest number density of IMBHs in the galaxy. A physical toy model with linear drag forces was developed to explain the orbital circularization with time. These findings constrain the spatial distribution of IMBHs, suggesting that future searches should focus on the central regions of the Galaxy. Additionally, we found that the 3D velocity distribution of IMBHs with respect to the galactic centre has a mean of $\sim 180 \, \mathrm{km \, s^{-1}}$ and larger variance with decreasing radius. Remarkably, the velocity distribution relative to the local gas shows significantly lower values, with a mean of $\sim 88 \, \mathrm{km \, s^{-1}}$. These results are instrumental for predicting the accretion and radiation properties of IMBHs, facilitating their detection with future surveys.

     
    more » « less