skip to main content


Search for: All records

Creators/Authors contains: "Whitehead, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    This paper begins with the premise that ethics and diversity, equity, and inclusion (DEI) overlap in engineering. Yet, the topics of ethics and DEI often inhabit different scholarly spaces in engineering education, thus creating a divide between these topics in engineering education research, teaching, and practice.

    Purpose

    We investigate the research question, “How are ethics and DEI explicitly connected in peer‐reviewed literature in engineering education and closely related fields?”

    Design

    We used systematic review procedures to synthesize intersections between ethics and DEI in engineering education scholarly literature. We extracted literature from engineering and engineering education databases and used thematic analysis to identify ethics/DEI connections.

    Results

    We identified three primary themes (each with three sub‐themes): (1) lenses that serve to connect ethics and DEI (social, justice‐oriented, professional), (2) roots that inform how ethics and DEI connect in engineering (individual demographics, disciplinary cultures, institutional cultures); and (3) engagement strategies for promoting ethics and DEI connections in engineering (affinity toward ethics/DEI content, understanding diverse stakeholders, working in diverse teams).

    Conclusions

    There is a critical mass of engineering education scholars explicitly exploring connections between ethics and DEI in engineering. Based on this review, potential benefits of integrating ethics and DEI in engineering include cultivating a socially just world and shifting engineering culture to be more inclusive and equitable, thus accounting for the needs and values of students and faculty from diverse backgrounds.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    Selection along environmental gradients can drive reproductive isolation and speciation. Among fishes, salinity is a major factor limiting species distributions, and despite its importance in generating species diversity, speciation events between marine and freshwater are rare. Here, we tested for mechanisms of reproductive isolation between locally adapted freshwater and brackish water‐native populations of killifish,Fundulus heteroclitus, from either side of a hybrid zone along a salinity gradient. There was evidence for pre‐zygotic endogenous reproductive isolation with reduced fertilization success between crosses of freshwater‐native males and brackish water‐native females. Exogenous pre‐zygotic isolation was also present where females had highest fertilization in their native salinity. We used a replicated mass spawning design to test for mate choice in both brackish and fresh water. After genotyping 187 parents and 2523 offspring at 2347 SNPs across the genome, 85% of offspring were successfully assign to their parents. However, no reinforcing mate choice was observed. These results therefore demonstrate emerging, yet limited, reproductive isolation and incipient speciation across a marine to freshwater salinity gradient and suggest that both endogenous and exogenous mechanisms, but not assortative mating, contribute to divergence.

     
    more » « less
  4. Abstract

    The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human‐altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts that adaptation is due to a few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments.Funduluskillifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype–phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and using RAD‐seq genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB‐126. We found that one to two large‐effect QTL loci accounted for resistance to PCB‐mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling. One QTL locus was shared across all populations and another was shared across three populations. One QTL locus showed strong signatures of recent natural selection in the corresponding wild population but another QTL locus did not. Some candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB‐126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB‐126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.

     
    more » « less
  5. Synopsis

    Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.

     
    more » « less
  6. null (Ed.)
    Radical environmental change that provokes population decline can impose constraints on the sources of genetic variation that may enable evolutionary rescue. Adaptive toxicant resistance has rapidly evolved in Gulf killifish ( Fundulus grandis ) that occupy polluted habitats. We show that resistance scales with pollution level and negatively correlates with inducibility of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18 to 34 generations ago) from Atlantic killifish ( F. heteroclitus ). One introgressed locus contains a deletion in AHR that confers a large adaptive advantage [selection coefficient ( s ) = 0.8]. Given the limited migration of killifish, recent adaptive introgression was likely mediated by human-assisted transport. We suggest that interspecies connectivity may be an important source of adaptive variation during extreme environmental change. 
    more » « less
  7. Abstract

    Variation in the metabolic costs associated with organismal maintenance may play a key role in determining fitness, and thus these differences among individuals are likely to be subject to natural selection. Although the evolvability of maintenance metabolism depends on its underlying genetic architecture, relatively little is known about the nature of genetic variation that underlies this trait. To address this, we measured variation in routine metabolic rate (O2routine), an index of maintenance metabolism, within and among three populations of Atlantic killifish,Fundulus heteroclitus, including a population from a region of genetic admixture between two subspecies. Polygenic association tests among individuals from the admixed population identified 54 single nucleotide polymorphisms (SNPs) that were associated withO2routine, and these SNPs accounted for 43% of interindividual variation in this trait. However, genetic associations withO2routineinvolved different SNPs if females and males were analysed separately, and there was a sex‐dependent effect of mitochondrial genotype on variation in routine metabolism. These results imply that there are sex‐specific genetic mechanisms, and potential mitonuclear interactions, that underlie variation inO2routine. Additionally, there was evidence for epistatic interactions between 17% of the possible pairs of trait‐associated SNPs, suggesting that epistatic effects onO2routineare common. These data demonstrate not only that phenotypic variation in this ecologically important trait has a polygenic basis with considerable epistasis among loci, but also that these underlying genetic mechanisms, and particularly the role of mitochondrial genotype, may be sex‐specific.

     
    more » « less
  8. Abstract

    The resilience of organisms to climate change through adaptive evolution is dependent on the extent of genetically based variation in key phenotypic traits and the nature of genetic associations between them. For aquatic animals, upper thermal tolerance and hypoxia tolerance are likely to be a important determinants of sensitivity to climate change. To determine the genetic basis of these traits and to detect associations between them, we compared naturally occurring populations of two subspecies of Atlantic killifish,Fundulus heteroclitus, that differ in both thermal and hypoxia tolerance. Multilocus association mapping demonstrated that 47 and 35 single nucleotide polymorphisms (SNPs) explained 43.4% and 51.9% of variation in thermal and hypoxia tolerance, respectively, suggesting that genetic mechanisms underlie a substantial proportion of variation in each trait. However, no explanatory SNPs were shared between traits, and upper thermal tolerance varied approximately linearly with latitude, whereas hypoxia tolerance exhibited a steep phenotypic break across the contact zone between the subspecies. These results suggest that upper thermal tolerance and hypoxia tolerance are neither phenotypically correlated nor genetically associated, and thus that rates of adaptive change in these traits can be independently fine‐tuned by natural selection. This modularity of important traits can underpin the evolvability of organisms to complex future environmental change.

     
    more » « less
  9. Abstract

    Capacity to cope with warming temperatures is a key determining factor of species' persistence under global climate change. Many successful invasive species have heightened thermal tolerance relative to their native counterparts, which may provide competitive advantages for habitat utilization and resource acquisition under warming scenarios, ultimately contributing to radically altered community composition. Enhanced transcriptional plasticity may be an important factor conferring superior abilities to cope with environmental stress, but the molecular mechanisms driving key differences of organismal traits in invasive versus native species are not well known. Although it is predicted that established invaders will evolve canalized phenotypes well‐adapted to new environments, it is not clear whether the same expectations are true for invaders of variable thermal environments or under climate warming scenarios where abilities to cope with fluctuating and increasing temperatures may provide fitness advantages. Here, we compare a highly successful invasive fish and a sympatric endangered native fish living in a dynamic estuarine environment that is projected to warm under climate change. We linked organismal physiological limits with global transcriptional responses at multiple common relative and absolute temperature thresholds and determined that heightened thermal tolerance of invasive Inland Silversides (Menidia beryllina) is associated with transcriptional changes that are greater both in the number of genes and the magnitude of response relative to native Delta Smelt (Hypomesus transpacificus). Modulated genes contributed to the enrichment of biological processes that differed between species and generally increased with temperature. These results are in concordance with the hypothesis that transcriptional plasticity may play a key role in determining population persistence, species interactions, and shaping community assemblages under climate change. Future studies encompassing a wider range of species and taxa are needed to determine whether this is a general pattern found between native and invasive species more broadly.

     
    more » « less