skip to main content


Search for: All records

Creators/Authors contains: "Whittlesey, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA’s Parker Solar Probe (PSP) using the Alfvén Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport–Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfvén wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introducing improvements in the energy partitioning of the wave dissipation to the electron and anisotropic proton heating and using a better grid design. We compare the new AWSoM results with the PSP data and find improved agreement with the magnetic field, turbulence level, and parallel proton plasma beta. To deduce the sources of the solar wind observed by PSP, we use the AWSoM model to determine the field line connectivity between PSP locations near the perihelion at 2018 November 6 UT 03:27 and the solar surface. Close to the perihelion, the field lines trace back to a negative-polarity region about the equator. 
    more » « less
  2. Abstract The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP’s FIELDS instrument suite. Measurements during PSP Encounters 4−8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a “hammerhead.” We refer to these proton beams, with their attendant “hammerhead” features, as the ion strahl. We present an example of these observations occurring simultaneously with a 7 hr ion-scale wave storm and show results from a preliminary attempt at quantifying the occurrence of ion-strahl broadening through three-component ion VDF fitting. We also provide a possible explanation of the ion perpendicular scattering based on quasilinear theory and the resonant scattering of beam ions by parallel-propagating, right circularly polarized, fast magnetosonic/whistler waves. 
    more » « less
  3. Abstract The hot and diffuse nature of the Sun’s extended atmosphere allows it to persist in non-equilibrium states for long enough that wave–particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are driven near the Sun, and calculate what instabilities are predicted for different models of the underlying particle populations. We model two hours-long intervals of PSP/SPAN-i measurements of the proton phase-space density during the PSP’s fourth perihelion with the Sun using two commonly used descriptions for the underlying velocity distribution. The linear stability and growth rates associated with the two models are calculated and compared. We find that both selected intervals are susceptible to resonant instabilities, though the growth rates and kinds of modes driven unstable vary depending on whether the protons are modeled using one or two components. In some cases, the predicted growth rates are large enough to compete with other dynamic processes, such as the nonlinear turbulent transfer of energy, in contrast with relatively slower instabilities at larger radial distances from the Sun. 
    more » « less
  4. Abstract In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS⊙IS’s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are streaming outward from the Sun. We do not see a shock in the in situ plasma or magnetic field data throughout the event. Heavy ions, such as O and Fe, were detected in addition to protons and 4He, but without significant enhancements in 3He or energetic electrons. Our analysis shows that this event is associated with a slow streamer blowout coronal mass ejection (SBO-CME), and the signatures of this small CME event are consistent with those typical of larger CME events. The time–intensity profile of this event shows that the Parker Solar Probe encountered the western flank of the SBO-CME. The anisotropic and dispersive nature of this event in a shockless local plasma gives indications that these particles are most likely accelerated remotely near the Sun by a weak shock or compression wave ahead of the SBO-CME. This event may represent direct observations of the source of the low-energy SEP seed particle population. 
    more » « less
  5. Abstract We present observations of ≳10–100 keV nucleon −1 suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track the magnetic field polarity reversal and show up to ∼10:1 anti-sunward, field-aligned flows and beams closer to the HCS that become nearly isotropic farther from the HCS; (4) the He spectrum steepens either side of the HCS, and the He, O, and Fe spectra exhibit power laws of the form ∼ E −4 – E 6 ; and (5) maximum energies E X increase with the ion’s charge-to-mass ( Q / M ) ratio as E X / E H ∝ ( Q X / M X ) δ , where δ ∼ 0.65–0.76, assuming that the average Q states are similar to those measured in gradual and impulsive solar energetic particle events at 1 au. The absence of velocity dispersion in combination with strong field-aligned anisotropies closer to the HCS appears to rule out solar flares and near-Sun coronal-mass-ejection-driven shocks. These new observations present challenges not only for mechanisms that employ direct parallel electric fields and organize maximum energies according to E / Q but also for local diffusive and magnetic-reconnection-driven acceleration models. Reevaluation of our current understanding of the production and transport of energetic ions is necessary to understand this near-solar, current-sheet-associated population of ST ions. 
    more » « less
  6. Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Aims. We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter. Methods. We analyse the magnetic field and plasma parameters from the FIELDS and Solar Wind Electrons Alphas and Protons instruments. Results. The three structures analysed all show typical signatures of magnetic reconnection. The ion velocity and magnetic field are first correlated and then anti-correlated at the inbound and outbound edges of the bifurcated current sheets with a central ion flow jet. Most of the reconnection events have a strong guide field and moderate magnetic shear, but one current sheet shows indications of quasi anti-parallel reconnection in conjunction with a magnetic field magnitude decrease by 90%. Conclusions. Given the wealth of intense current sheets observed by PSP, reconnection at switchback boundaries appears to be rare. However, as the switchback boundaries accomodate currents, one can conjecture that the geometry of these boundaries offers favourable conditions for magnetic reconnection to occur. Such a mechanism would thus contribute in reconfiguring the magnetic field of the switchbacks, affecting the dynamics of the solar wind and eventually contributing to the blending of the structures with the regular wind as they propagate away from the Sun. 
    more » « less
  7. null (Ed.)
    Context. Aims. We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of ~0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe. Methods. We extended our previous magnetic helicity-based technique of identifying magnetic flux rope structures. The method was improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun. Results. A total of 21 and 34 magnetic flux ropes are identified during the third (21-day period) and fourth (17-day period) orbits of the Parker Solar Probe, respectively. We provide a statistical analysis of the identified structures, including their relation to the streamer belt and heliospheric current sheet crossing. 
    more » « less