skip to main content


Search for: All records

Creators/Authors contains: "Williams, A. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Downslope wind‐driven fires have resulted in many of the wildfire disasters in the western United States and represent a unique hazard to infrastructure and human life. We analyze the co‐occurrence of wildfires and downslope winds across the western United States (US) during 1992–2020. Downslope wind‐driven fires accounted for 13.4% of the wildfires and 11.9% of the burned area in the western US yet accounted for the majority of local burned area in portions of southern California, central Washington, and the front range of the Rockies. These fires were predominantly ignited by humans, occurred closer to population centers, and resulted in outsized impacts on human lives and infrastructure. Since 1999, downslope wind‐driven fires have accounted for 60.1% of structures and 52.4% of human lives lost in wildfires in the western US. Downslope wind‐driven fires occurred under anomalously dry fuels and exhibited a seasonality distinct from other fires—occurring primarily in the spring and fall. Over 1992–2020, we document a 25% increase in the annual number of downslope wind‐driven fires and a 140% increase in their respective annual burned area, which partially reflects trends toward drier fuels. These results advance our understanding of the importance of downslope winds in driving disastrous wildfires that threaten populated regions adjacent to mountain ranges in the western US. The unique characteristics of downslope wind‐driven fires require increased fire prevention and adaptation strategies to minimize losses and incorporation of changing human‐ignitions, fuel availability and dryness, and downslope wind occurrence to elucidate future fire risk.

     
    more » « less
  2. Abstract

    Austral summer precipitation increased by 27% from 1902 to 2020 over southeastern South America (SESA), one of the largest centennial precipitation trends observed globally. We assess the influence of the South American low‐level jet on the SESA precipitation trend by analyzing low‐level moisture fluxes into SESA in two reanalysis datasets from 1951 to 2020. Increased moisture flux through the jet accounts for 20%–45% of the observed SESA precipitation trend. While results vary among reanalyzes, both point to increased humidity as a fundamental driver of increased moisture flux and SESA precipitation. Increased humidity within the jet is consistent with warming sea surface temperatures driven by anthropogenic forcing, although additional natural climate variations also may have played a role. The jet's velocity also increased, further enhancing precipitation, but without a clear connection to anthropogenic forcing. Our findings indicate the SESA precipitation trend is partly attributable to jet intensification arising from both natural variability and anthropogenic forcing.

     
    more » « less
  3. Abstract

    As the Arctic warms, tundra wildfires are expected to become more frequent and severe. Assessing how the most flammable regions of the tundra respond to burning can inform us about how the rest of the Arctic may be affected by climate change. Here we describe ecosystem responses to tundra fires in the Noatak River watershed of northwestern Alaska using shrub dendrochronology, active‐layer depth monitoring, and remotely sensed vegetation productivity. Results show that relatively productive tundra is more likely to experience fires and to burn more severely, suggesting that fuel loads currently limit tundra fire distribution in the Noatak Valley. Within three years of burning, most alder shrubs sampled had either germinated or resprouted, and vegetation productivity inside 60 burn perimeters had recovered to prefire values. Tundra fires resulted in two phases of increased primary productivity as manifested by increased landscape greening. Phase one occurred in most burned areas 3–10 years after fires, and phase two occurred 16–44 years after fire at sites where tundra fires triggered near‐surface permafrost thaw resulting in shrub proliferation. A fire‐shrub‐greening positive feedback is currently operating in the Noatak Valley and this feedback could expand northward as air temperatures, fire frequencies, and permafrost degradation increase. This feedback will not occur at all locations. In the Noatak Valley, the fire‐shrub‐greening process is relatively limited in tussock tundra communities, where low‐severity fires and shallow active layers exclude shrub proliferation. Climate warming and enhanced fire occurrence will likely shift fire‐poor landscapes into either the tussock tundra or erect‐shrub‐tundra ecological attractor states that now dominate the fire‐rich Noatak Valley.

     
    more » « less
  4. Abstract

    California’s water resources rely heavily on cool‐season (November–March) precipitation in the Sierra Nevada. Interannual variability is highly volatile and seasonal forecasting has little to no skill, making water management particularly challenging. Over 1902–2020, Sierra Nevada cool‐season precipitation totals exhibited significant 2.2‐ and 13–15‐year cycles, accounting for approximately 40% of total variability and perhaps signifying potential as seasonal forecasting tools. However, the underlying climate dynamics are not well understood and it is unclear whether these cycles are stable over the long term. We use tree rings to reconstruct Sierra Nevada cool‐season precipitation back to 1400. The reconstruction is skillful, accounting for 55%–74% of observed variability and capturing the 20th‐century 2.2‐ and 13–15‐year cycles. Prior to 1900, the reconstruction indicates no other century‐long periods of significant spectral power in the 2.2‐ or 13–15‐year bands. The reconstruction does indicate significant cyclicity over other extended periods of several decades or longer, however, with dominant periodicities in the ranges of 2.1–2.7 and 3.5–8 years. The late 1700s through 1800s exhibited the highest‐amplitude cycles in the reconstruction, with periodicities of 2.4 and 5.7–7.4 years. The reconstruction should serve to caution against extrapolating the observed 2.2‐ and 13–15‐year cycles to guide future expectations. On the other hand, observations and the reconstruction suggest that interannual variability of Sierra Nevada cool‐season precipitation is not a purely white noise process and research should aim to diagnose the dynamical drivers of extended periods of cyclicity in this critical natural resource.

     
    more » « less