skip to main content

Title: Downslope Wind‐Driven Fires in the Western United States

Downslope wind‐driven fires have resulted in many of the wildfire disasters in the western United States and represent a unique hazard to infrastructure and human life. We analyze the co‐occurrence of wildfires and downslope winds across the western United States (US) during 1992–2020. Downslope wind‐driven fires accounted for 13.4% of the wildfires and 11.9% of the burned area in the western US yet accounted for the majority of local burned area in portions of southern California, central Washington, and the front range of the Rockies. These fires were predominantly ignited by humans, occurred closer to population centers, and resulted in outsized impacts on human lives and infrastructure. Since 1999, downslope wind‐driven fires have accounted for 60.1% of structures and 52.4% of human lives lost in wildfires in the western US. Downslope wind‐driven fires occurred under anomalously dry fuels and exhibited a seasonality distinct from other fires—occurring primarily in the spring and fall. Over 1992–2020, we document a 25% increase in the annual number of downslope wind‐driven fires and a 140% increase in their respective annual burned area, which partially reflects trends toward drier fuels. These results advance our understanding of the importance of downslope winds in driving disastrous wildfires that threaten populated regions adjacent to mountain ranges in the western US. The unique characteristics of downslope wind‐driven fires require increased fire prevention and adaptation strategies to minimize losses and incorporation of changing human‐ignitions, fuel availability and dryness, and downslope wind occurrence to elucidate future fire risk.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, Junguo (Ed.)
    Abstract Structure loss is an acute, costly impact of the wildfire crisis in the western conterminous United States (“West”), motivating the need to understand recent trends and causes. We document a 246% rise in West-wide structure loss from wildfires between 1999–2009 and 2010–2020, driven strongly by events in 2017, 2018, and 2020. Increased structure loss was not due to increased area burned alone. Wildfires became significantly more destructive, with a 160% higher structure-loss rate (loss/kha burned) over the past decade. Structure loss was driven primarily by wildfires from unplanned human-related ignitions (e.g. backyard burning, power lines, etc.), which accounted for 76% of all structure loss and resulted in 10 times more structures destroyed per unit area burned compared with lightning-ignited fires. Annual structure loss was well explained by area burned from human-related ignitions, while decadal structure loss was explained by state-level structure abundance in flammable vegetation. Both predictors increased over recent decades and likely interacted with increased fuel aridity to drive structure-loss trends. While states are diverse in patterns and trends, nearly all experienced more burning from human-related ignitions and/or higher structure-loss rates, particularly California, Washington, and Oregon. Our findings highlight how fire regimes—characteristics of fire over space and time—are fundamentally social-ecological phenomena. By resolving the diversity of Western fire regimes, our work informs regionally appropriate mitigation and adaptation strategies. With millions of structures with high fire risk, reducing human-related ignitions and rethinking how we build are critical for preventing future wildfire disasters. 
    more » « less
  2. Abstract

    Extreme wind‐driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic autumn wildfires in the western United States co‐occurred with record‐ or near‐record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic influence on extreme autumn fire weather in 2017 and 2018. We show that while present‐day anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind‐driven fires have occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to high‐impact catastrophic fires in populated regions of the western US.

    more » « less
  3. Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions. 
    more » « less
  4. Abstract

    Several very large high‐impact fires burned nearly 4,000 km2of mesic forests in western Oregon during September 7–9, 2020. While infrequent, very large high‐severity fires have occurred historically in western Oregon, the extreme nature of this event warrants analyses of climate and meteorological drivers. A strong blocking pattern led to an intrusion of dry air and strong downslope east winds in the Oregon Cascades following a warm‐dry 60‐day period that promoted widespread fuel flammability. Viewed independently, both the downslope east winds and fuel dryness were extreme, but not unprecedented. However, the concurrence of these drivers resulted in compound extremes and impacts unmatched in the observational record. We additionally find that most large wildfires in western Oregon since 1900 have similarly coincided with warm‐dry summers during at least moderate east wind events. These results reinforce the importance of incorporating a multivariate lens for compound extremes in assessing wildfire hazard risk.

    more » « less
  5. In recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means clustering to create a hierarchical classification scheme of areas with relatively homogeneous fire characteristics, or modern ‘pyromes,’ and report on the model with eight major pyromes. Human ignition pressure provides a key explanation for the East-West patterns of fire characteristics. Human-dominated pyromes (85% mean anthropogenic ignitions), with moderate fire size, area burned, and intensity, covered 59% of CONUS, primarily in the East and East Central. Physically dominated pyromes (47% mean anthropogenic ignitions) characterized by relatively large (average 439 mean annual ha per 50 km pixel) and intense (average 75 mean annual megawatts/pixel) fires occurred in 14% of CONUS, primarily in the West and West Central. The percent of anthropogenic ignitions increased over time in all pyromes (0.5–1.7% annually). Higher fire frequency was related to smaller events and lower FRP, and these relationships were moderated by vegetation, climate, and ignition type. Notably, a spatial mismatch between our derived modern pyromes and both ecoregions and historical fire regimes suggests other major drivers for modern U.S. fire patterns than vegetation-based classification systems. This effort to delineate modern U.S. pyromes based on fire observations provides a national-scale framework of contemporary fire regions and may help elucidate patterns of change in an uncertain future. 
    more » « less