skip to main content


Search for: All records

Creators/Authors contains: "Wu, Man"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recently, Raman Spectroscopy (RS) was demonstrated to be a non-destructive way of cancer diagnosis, due to the uniqueness of RS measurements in revealing molecular biochemical changes between cancerous vs. normal tissues and cells. In order to design computational approaches for cancer detection, the quality and quantity of tissue samples for RS are important for accurate prediction. In reality, however, obtaining skin cancer samples is difficult and expensive due to privacy and other constraints. With a small number of samples, the training of the classifier is difficult, and often results in overfitting. Therefore, it is important to have more samples to better train classifiers for accurate cancer tissue classification. To overcome these limitations, this paper presents a novel generative adversarial network based skin cancer tissue classification framework. Specifically, we design a data augmentation module that employs a Generative Adversarial Network (GAN) to generate synthetic RS data resembling the training data classes. The original tissue samples and the generated data are concatenated to train classification modules. Experiments on real-world RS data demonstrate that (1) data augmentation can help improve skin cancer tissue classification accuracy, and (2) generative adversarial network can be used to generate reliable synthetic Raman spectroscopic data.

     
    more » « less
  2. null (Ed.)
    Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs, due to their expressive power in capturing complex interdependency between nodes. To enable GNN learning, existing works typically assume that labeled nodes, from two or multiple classes, are provided, so that a discriminative classifier can be learned from the labeled data. In reality, this assumption might be too restrictive for applications, as users may only provide labels of interest in a single class for a small number of nodes. In addition, most GNN models only aggregate information from short distances ( e.g. , 1-hop neighbors) in each round, and fail to capture long-distance relationship in graphs. In this article, we propose a novel GNN framework, long-short distance aggregation networks, to overcome these limitations. By generating multiple graphs at different distance levels, based on the adjacency matrix, we develop a long-short distance attention model to model these graphs. The direct neighbors are captured via a short-distance attention mechanism, and neighbors with long distance are captured by a long-distance attention mechanism. Two novel risk estimators are further employed to aggregate long-short-distance networks, for PU learning and the loss is back-propagated for model learning. Experimental results on real-world datasets demonstrate the effectiveness of our algorithm. 
    more » « less
  3. Objective

    This study examined the interaction of gait-synchronized vibrotactile cues with an active ankle exoskeleton that provides plantarflexion assistance.

    Background

    An exoskeleton that augments gait may support collaboration through feedback to the user about the state of the exoskeleton or characteristics of the task.

    Methods

    Participants ( N = 16) were provided combinations of torque assistance and vibrotactile cues at pre-specified time points in late swing and early stance while walking on a self-paced treadmill. Participants were either given explicit instructions ( N = 8) or were allowed to freely interpret (N=8) how to coordinate with cues.

    Results

    For the free interpretation group, the data support an 8% increase in stride length and 14% increase in speed with exoskeleton torque across cue timing, as well as a 5% increase in stride length and 7% increase in speed with only vibrotactile cues. When given explicit instructions, participants modulated speed according to cue timing—increasing speed by 17% at cues in late swing and decreasing speed 11% at cues in early stance compared to no cue when exoskeleton torque was off. When torque was on, participants with explicit instructions had reduced changes in speed.

    Conclusion

    These findings support that the presence of torque mitigates how cues were used and highlights the importance of explicit instructions for haptic cuing. Interpreting cues while walking with an exoskeleton may increase cognitive load, influencing overall human-exoskeleton performance for novice users.

    Application

    Interactions between haptic feedback and exoskeleton use during gait can inform future feedback designs to support coordination between users and exoskeletons.

     
    more » « less