skip to main content


Search for: All records

Creators/Authors contains: "Wu, Zhiwei Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. A reconstruction attack on a private dataset D takes as input some publicly accessible information about the dataset and produces a list of candidate elements of D . We introduce a class of data reconstruction attacks based on randomized methods for nonconvex optimization. We empirically demonstrate that our attacks can not only reconstruct full rows of D from aggregate query statistics Q ( D )∈ℝ m but can do so in a way that reliably ranks reconstructed rows by their odds of appearing in the private data, providing a signature that could be used for prioritizing reconstructed rows for further actions such as identity theft or hate crime. We also design a sequence of baselines for evaluating reconstruction attacks. Our attacks significantly outperform those that are based only on access to a public distribution or population from which the private dataset D was sampled, demonstrating that they are exploiting information in the aggregate statistics Q ( D ) and not simply the overall structure of the distribution. In other words, the queries Q ( D ) are permitting reconstruction of elements of this dataset, not the distribution from which D was drawn. These findings are established both on 2010 US decennial Census data and queries and Census-derived American Community Survey datasets. Taken together, our methods and experiments illustrate the risks in releasing numerically precise aggregate statistics of a large dataset and provide further motivation for the careful application of provably private techniques such as differential privacy. 
    more » « less
  3. Food waste and insecurity are two societal challenges that coexist in many parts of the world. A prominent force to combat these issues, food rescue platforms match food donations to organizations that serve underprivileged communities, and then rely on external volunteers to transport the food. Previous work has developed machine learning models for food rescue volunteer engagement. However, having long worked with domain practitioners to deploy AI tools to help with food rescues, we understand that there are four main pain points that keep such a machine learning model from being actually useful in practice: small data, data collected only under the default intervention, unmodeled objectives due to communication gap, and unforeseen consequences of the intervention. In this paper, we introduce bandit data-driven optimization which not only helps address these pain points in food rescue, but also is applicable to other nonprofit domains that share similar challenges. Bandit data-driven optimization combines the advantages of online bandit learning and offline predictive analytics in an integrated framework. We propose PROOF, a novel algorithm for this framework and formally prove that it has no-regret. We show that PROOF performs better than existing baseline on food rescue volunteer recommendation. 
    more » « less