skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Confidence-ranked reconstruction of census microdata from published statistics
A reconstruction attack on a private dataset D takes as input some publicly accessible information about the dataset and produces a list of candidate elements of D . We introduce a class of data reconstruction attacks based on randomized methods for nonconvex optimization. We empirically demonstrate that our attacks can not only reconstruct full rows of D from aggregate query statistics Q ( D )∈ℝ m but can do so in a way that reliably ranks reconstructed rows by their odds of appearing in the private data, providing a signature that could be used for prioritizing reconstructed rows for further actions such as identity theft or hate crime. We also design a sequence of baselines for evaluating reconstruction attacks. Our attacks significantly outperform those that are based only on access to a public distribution or population from which the private dataset D was sampled, demonstrating that they are exploiting information in the aggregate statistics Q ( D ) and not simply the overall structure of the distribution. In other words, the queries Q ( D ) are permitting reconstruction of elements of this dataset, not the distribution from which D was drawn. These findings are established both on 2010 US decennial Census data and queries and Census-derived American Community Survey datasets. Taken together, our methods and experiments illustrate the risks in releasing numerically precise aggregate statistics of a large dataset and provide further motivation for the careful application of provably private techniques such as differential privacy.  more » « less
Award ID(s):
2147212 2217062
PAR ID:
10426399
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
8
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bun, Mark (Ed.)
    Given a differentially private unbiased estimate q̃ = q(D) +ν of a statistic q(D), we wish to obtain unbiased estimates of functions of q(D), such as 1/q(D), solely through post-processing of q̃, with no further access to the confidential dataset D. To this end, we adapt the deconvolution method used for unbiased estimation in the statistical literature, deriving unbiased estimators for a broad family of twice-differentiable functions - those that are tempered distributions - when the privacy-preserving noise ν is drawn from the Laplace distribution (Dwork et al., 2006). We further extend this technique to functions other than tempered distributions, deriving approximately optimal estimators that are unbiased for values in a user-specified interval (possibly extending to ± ∞). We use these results to derive an unbiased estimator for private means when the size n of the dataset is not publicly known. In a numerical application, we find that a mechanism that uses our estimator to return an unbiased sample size and mean outperforms a mechanism that instead uses the previously known unbiased privacy mechanism for such means (Kamath et al., 2023). We also apply our estimators to develop unbiased transformation mechanisms for per-record differential privacy, a privacy concept in which the privacy guarantee is a public function of a record’s value (Seeman et al., 2024). Our mechanisms provide stronger privacy guarantees than those in prior work (Finley et al., 2024) by using Laplace, rather than Gaussian, noise. Finally, using a different approach, we go beyond Laplace noise by deriving unbiased estimators for polynomials under the weak condition that the noise distribution has sufficiently many moments. 
    more » « less
  2. Abstract Organizations often collect private data and release aggregate statistics for the public’s benefit. If no steps toward preserving privacy are taken, adversaries may use released statistics to deduce unauthorized information about the individuals described in the private dataset. Differentially private algorithms address this challenge by slightly perturbing underlying statistics with noise, thereby mathematically limiting the amount of information that may be deduced from each data release. Properly calibrating these algorithms—and in turn the disclosure risk for people described in the dataset—requires a data curator to choose a value for a privacy budget parameter, ɛ . However, there is little formal guidance for choosing ɛ , a task that requires reasoning about the probabilistic privacy–utility tradeoff. Furthermore, choosing ɛ in the context of statistical inference requires reasoning about accuracy trade-offs in the presence of both measurement error and differential privacy (DP) noise. We present Vi sualizing P rivacy (ViP), an interactive interface that visualizes relationships between ɛ , accuracy, and disclosure risk to support setting and splitting ɛ among queries. As a user adjusts ɛ , ViP dynamically updates visualizations depicting expected accuracy and risk. ViP also has an inference setting, allowing a user to reason about the impact of DP noise on statistical inferences. Finally, we present results of a study where 16 research practitioners with little to no DP background completed a set of tasks related to setting ɛ using both ViP and a control. We find that ViP helps participants more correctly answer questions related to judging the probability of where a DP-noised release is likely to fall and comparing between DP-noised and non-private confidence intervals. 
    more » « less
  3. Differential privacy is the dominant standard for formal and quantifiable privacy and has been used in major deployments that impact millions of people. Many differentially private algorithms for query release and synthetic data contain steps that reconstruct answers to queries from answers to other queries that have been measured privately. Reconstruction is an important subproblem for such mecha- nisms to economize the privacy budget, minimize error on reconstructed answers, and allow for scalability to high-dimensional datasets. In this paper, we introduce a principled and efficient postprocessing method ReM (Residuals-to-Marginals) for reconstructing answers to marginal queries. Our method builds on recent work on efficient mechanisms for marginal query release, based on making measurements using a residual query basis that admits efficient pseudoinversion, which is an important primitive used in reconstruction. An extension GReM-LNN (Gaussian Residuals-to-Marginals with Local Non-negativity) reconstructs marginals under Gaussian noise satisfying consistency and non-negativity, which often reduces error on reconstructed answers. We demonstrate the utility of ReM and GReM-LNN by applying them to improve existing private query answering mechanisms. 
    more » « less
  4. Differentially private (DP) mechanisms have been deployed in a variety of high-impact social settings (perhaps most notably by the U.S. Census). Since all DP mechanisms involve adding noise to results of statistical queries, they are expected to impact our ability to accurately analyze and learn from data, in effect trading off privacy with utility. Alarmingly, the impact of DP on utility can vary significantly among different sub-populations. A simple way to reduce this disparity is with stratification. First compute an independent private estimate for each group in the data set (which may be the intersection of several protected classes), then, to compute estimates of global statistics, appropriately recombine these group estimates. Our main observation is that naive stratification often yields high-accuracy estimates of population-level statistics, without the need for additional privacy budget. We support this observation theoretically and empirically. Our theoretical results center on the private mean estimation problem, while our empirical results center on extensive experiments on private data synthesis to demonstrate the effectiveness of stratification on a variety of private mechanisms. Overall, we argue that this straightforward approach provides a strong baseline against which future work on reducing utility disparities of DP mechanisms should be compared. 
    more » « less
  5. Skyline queries are used to find the Pareto optimal solution from datasets containing multi-dimensional data points. In this paper, we propose a new type of skyline queries whose evaluation is constrained by a multi-cost transportation network (MCTN) and whose answers are off the network. This type of skyline queries is useful in many applications. For example, a person wants to find an apartment by considering not only the price and the surrounding area of the apartment, but also the transportation cost, time, and distance between the apartment and his/her work place. Most existing works that evaluate skyline queries on multi-cost networks (MCNs), which are either MCTNs or road networks, find interesting objects that locate on edges of the networks. Formally, our new type of skyline queries takes as input an MCTN, a query point q, and a set of objects of interest D with spatial information, where q and the objects in D are off the network. The answers to such queries are objects in D that are not dominated by other D objects when considering the multiple attributes of these objects and the multiple network cost from q to the solution objects. To evaluate such queries, we propose an exact search algorithm and its improved version by implementing several properties. The space of the exact skyline solutions is huge and can easily reach the order of thousands and incur long evaluation time. We further design much more efficient heuristic methods to find approximate solutions. We run extensive experiments using both real and synthetic datasets to test the effectiveness and efficiency of our proposed approaches. The results show that the exact search algorithm can be dramatically improved by utilizing several properties. The heuristic approaches to find approximate answers can largely reduce the query time and retrieve results that are comparable to the exact solutions. 
    more » « less