skip to main content


Search for: All records

Creators/Authors contains: "Xu, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the complexity of concepts becomes diverse. Specifically, at the representational level, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) build an inverted-U relation. Leveraging the Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the computational level, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity out-perform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. We introduce perturbative spatial frequency domain imaging (p-SFDI) for fast two-dimensional (2D) mapping of the optical properties and physiological characteristics of skin and cutaneous microcirculation using spatially modulated visible light. Compared to the traditional methods for recovering 2D maps through a pixel-by-pixel inversion, p-SFDI significantly shortens parameter retrieval time, largely avoids the random fitting errors caused by measurement noise, and enhances the image reconstruction quality. The efficacy of p-SFDI is demonstrated byin vivoimaging forearm of one healthy subject, recovering the 2D spatial distribution of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, the melanin content, and the epidermal thickness over a large field of view. Furthermore, the temporal and spatial variations in physiological parameters under the forearm reactive hyperemia protocol are revealed, showing its applications in monitoring temporal and spatial dynamics.

     
    more » « less
  3. We present a dynamic microcirculation PIPE model for functional neuroimaging, non-neuroimaging, and coherent hemodynamics spectroscopy. The temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, comprised of the contributions from the arterioles, capillaries, and venules of microvasculature, is determined by time-resolved hemodynamic and metabolic variations in blood volume, flow velocity, and oxygen consumption with a fluid mechanics treatment. Key parameters regarding microcirculation can be assessed, including the effective blood transit times through the capillaries and the venules, and the rate constant of oxygen release from hemoglobin to tissue. The vascular autoregulation can further be quantified from the relationship between the resolved blood volume and flow velocity variations. The PIPE model shows excellent agreement with the experimental cerebral and cutaneous coherent hemodynamics spectroscopy (CHS) and fMRI-BOLD data. It further identifies the impaired cerebral autoregulation distinctively in hemodialysis patients compared to healthy subjects measured by CHS. This new dynamic microcirculation PIPE model provides a valuable tool for brain and other functional studies with hemodynamic-based techniques. It is instrumental in recovering physiological parameters from analyzing and interpreting the signals measured by hemodynamic-based neuroimaging and non-neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation, physiological challenges, or physical maneuvers.

     
    more » « less
  4. The softening effect of ultrasonic vibration on pure copper is studied from a new perspective with micro-tensile tests, where the gauge length of the specimen is one order of magnitude smaller than the ultrasonic wavelength. With this configuration, the amount of flow stress reduction increases linearly with vibration amplitude whereas the flow stress reduction is insensitive to the studied strain rate ranging from 0.06/s to 1/s. Temperature rise associated with ultrasonic vibration is minimal from infrared thermal imaging. In situ digital image correlation (DIC) analysis shows strain localization near ultrasonic source whereas uniform strain distribution was observed during conventional tensile test. Optical microstructure characterization shows that area fraction of annealing twins in the deformed copper reduced from 3.3% to 1.8% with ultrasonic vibration. This is possibly attributed to enhanced interaction of dislocation between twin boundaries which act as non-regenerative dislocation source. Electron backscatter diffraction (EBSD) results show that ultrasonic vibration promotes preferential grain re-orientation and reduces the misorientation within grains. 
    more » « less
  5. null ; null ; null ; null ; null ; null (Ed.)
    The National Ecological Observatory Network (NEON) is a continental-scale observatory with sites across the US collecting standardized ecological observations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision data in near-real time to the NEON Data Portal and to High Performance Computing (HPC) systems, running ensembles of Earth system models (ESMs) that assimilate the data. For the first time gridded EC data products and response functions promise to offset pervasive observational biases through evaluating, benchmarking, optimizing parameters, and training new ma- chine learning parameterizations within ESMs all at the same model-grid scale. Leveraging open-source software for EC data analysis, we are al- ready building software infrastructure for integration of near-real time data streams into the International Land Model Benchmarking (ILAMB) package for use by the wider research community. We will present a perspective on the design and integration of end-to-end infrastructure for data acquisition, edge computing, HPC simulation, analysis, and validation, where Artificial Intelligence (AI) approaches are used throughout the distributed workflow to improve accuracy and computational performance. 
    more » « less