skip to main content


Search for: All records

Creators/Authors contains: "Yang, Kun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Free, publicly-accessible full text available March 1, 2025
  3. Abstract. ​​​​​​​Land–atmosphere coupling (LAC) has long been studied, focusing on land surface and atmospheric boundary layer processes. However, the influence of humidity in the lower troposphere (LT), especially that above the planetary boundary layer (PBL), on LAC remains largely unexplored. In this study, we use radiosonde observations from the US Southern Great Plains (SGP) site and an entrained parcel buoyancy model to investigate the impact of LT humidity on LAC there during the warm season (May–September). We quantify the effect of LT humidity on convective buoyancy by measuring the difference between the 2–4 km vertically integrated buoyancy with the influence of background LT humidity and that without it. Our results show that, under dry soil conditions, anomalously high LT humidity is necessary to produce the buoyancy profiles required for afternoon precipitation events (APEs). These APEs under dry soil moisture cannot be explained by commonly used local LAC indices such as the convective triggering potential and low-level humidity index (CTP / HILow), which do not account for the influence of the LT humidity. On the other hand, consideration of LT humidity is unnecessary to explain APEs under wet soil moisture conditions, suggesting that the boundary layer moisture alone could be sufficient to generate the required buoyancy profiles. These findings highlight the need to consider the impact of LT humidity, which is often decoupled from the humidity near the surface and is largely controlled by moisture transport, in understanding land–atmospheric feedbacks under dry soil conditions, especially during droughts or dry spells over the SGP.

     
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  4. Abstract

    Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between sub-cortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC.

     
    more » « less
  5. Free, publicly-accessible full text available December 1, 2024
  6. In this paper, we consider a perturbed version of a very simple and exactly solvable model that supports Fermi arcs and pseudogap in its ground state and excitation spectrum, which includes Hubbard-like interactions in both momentum and real spaces. We find that the combined effects give rise to non-Fermi liquid behavior in the electron self-energy. This points to a novel mechanism that leads to non-Fermi liquid behavior, which is of strong current interest in the context of strongly correlated metals, that often become superconductors. Comparison will be made with phenomenology of high- temperature cuprate superconductors.

     
    more » « less
    Free, publicly-accessible full text available October 20, 2024
  7. Free, publicly-accessible full text available November 1, 2024
  8. Free, publicly-accessible full text available September 1, 2024
  9. Free, publicly-accessible full text available June 1, 2024