Time-resolved functional network connectivity (trFNC) provides a useful tool for representing functional magnetic resonance imaging (fMRI) data with functional networks that change with time. Partly due to its simplicity, sliding window Pearson correlation (SWPC) is the most widely-used method for trFNC estimation. In SWPC, the window size should be selected long enough to avoid spurious estimates of connectivity values, and short enough to capture meaningful fast variations in connectivity estimates. To solve this issue, we propose a method inspired by single sideband (SSB) modulation that allows us to select small window sizes for SWPC without filtering out important low-frequency activity information. We use simulation to show the improvement offered by the proposed method. Additionally, we use fMRI data to show that SSB-SWPC estimates have reduced spurious variation compared with typical SWPC estimators.
more »
« less
Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study
Abstract Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between subcortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC.
more »
« less
- Award ID(s):
- 2112455
- PAR ID:
- 10495618
- Publisher / Repository:
- DOI PREFIX: 10.1162
- Date Published:
- Journal Name:
- Network Neuroscience
- ISSN:
- 2472-1751
- Format(s):
- Medium: X Size: p. 1-28
- Size(s):
- p. 1-28
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In neuroimaging research, understanding the intricate dynamics of brain networks over time is paramount for unraveling the complexities of brain function. One approach commonly used to explore the dynamic nature of brain networks is functional connectivity analysis. However, while functional connectivity offers valuable insights, it fails to consider the diverse timescales of coupling between different brain regions. This gap in understanding leaves a significant aspect of brain dynamics unexplored in neuroimaging research. We propose an innovative approach that delves into the dynamic coupling/connectivity timescales of brain regions relative to one another, focusing on how brain region couplings stretch or shrink over time, rather than relying solely on functional connectivity measures. Our method introduces a novel metric called “warping elasticity,” which utilizes dynamic time warping (DTW) to capture the temporal nuances of connectivity. Unlike traditional methods, our approach allows for (potentially nonlinear) dynamic compression and expansion of the time series, offering a more intricate understanding of how coupling between brain regions evolves. Through the adaptive windows employed by the DTW method, we can effectively capture transient couplings within varying connectivity timescales of brain network pairs. In extensive evaluations, our method exhibits high replicability across subjects and diverse datasets, showcasing robustness against noise. More importantly, it uncovers statistically significant distinctions between healthy control (HC) and schizophrenia (SZ) groups through the identification of warp elasticity states. These states are cluster centroids, representing the warp elasticity across subjects and time, offering a novel perspective on the dynamic nature of brain connectivity, distinct from conventional metrics focused solely on functional connectivity. For instance, controls spend more time in a warp elasticity state characterized by timescale stretching of the visual domain relative to other domains, suggesting disruptions in the visual cortex. Conversely, patients show increased time spent in a warp elasticity state with stretching timescales in higher cognitive areas relative to sensory regions, indicative of prolonged cognitive processing of sensory input. Overall, our approach presents a promising avenue for investigating the temporal dynamics of brain network interactions in functional magnetic resonance imaging (fMRI) data. By focusing on the elasticity of connectivity timescales, rather than adhering to functional connectivity metrics, we pave the way for a deeper understanding of neuropsychiatric disorders in neuroscience research.more » « less
-
Abstract We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan.more » « less
-
Abstract The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories.more » « less
-
IntroductionResting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool for assessing functional brain connectivity. Recent studies have focused on shorter-term connectivity and dynamics in the resting state. However, most of the prior work evaluates changes in time-series correlations. In this study, we propose a framework that focuses on time-resolved spectral coupling (assessed via the correlation between power spectra of the windowed time courses) among different brain circuits determined via independent component analysis (ICA). MethodsMotivated by earlier work suggesting significant spectral differences in people with schizophrenia, we developed an approach to evaluate time-resolved spectral coupling (trSC). To do this, we first calculated the correlation between the power spectra of windowed time-courses pairs of brain components. Then, we subgrouped each correlation map into four subgroups based on the connectivity strength utilizing quartiles and clustering techniques. Lastly, we examined clinical group differences by regression analysis for each averaged count and average cluster size matrices in each quartile. We evaluated the method by applying it to resting-state data collected from 151 (114 males, 37 females) people with schizophrenia (SZ) and 163 (117 males, 46 females) healthy controls (HC). ResultsOur proposed approach enables us to observe the change of connectivity strength within each quartile for different subgroups. People with schizophrenia showed highly modularized and significant differences in multiple network domains, whereas males and females showed less modular differences. Both cell count and average cluster size analysis for subgroups indicate a higher connectivity rate in the fourth quartile for the visual network in the control group. This indicates increased trSC in visual networks in the controls. In other words, this shows that the visual networks in people with schizophrenia have less mutually consistent spectra. It is also the case that the visual networks are less spectrally correlated on short timescales with networks of all other functional domains. ConclusionsThe results of this study reveal significant differences in the degree to which spectral power profiles are coupled over time. Importantly, there are significant but distinct differences both between males and females and between people with schizophrenia and controls. We observed a more significant coupling rate in the visual network for the healthy controls and males in the upper quartile. Fluctuations over time are complex, and focusing on only time-resolved coupling among time-courses is likely to miss important information. Also, people with schizophrenia are known to have impairments in visual processing but the underlying reasons for the impairment are still unknown. Therefore, the trSC approach can be a useful tool to explore the reasons for the impairments.more » « less