skip to main content


Search for: All records

Creators/Authors contains: "Yuan, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The process of matching patients with suitable clinical trials is essential for advancing medical research and providing optimal care. However, current approaches face challenges such as data standardization, ethical considerations, and a lack of interoperability between Electronic Health Records (EHRs) and clinical trial criteria. In this paper, we explore the potential of large language models (LLMs) to address these challenges by leveraging their advanced natural language generation capabilities to improve compatibility between EHRs and clinical trial descriptions. We propose an innovative privacy-aware data augmentation approach for LLM-based patient-trial matching (LLM-PTM), which balances the benefits of LLMs while ensuring the security and confidentiality of sensitive patient data. Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%. Additionally, we present case studies to further illustrate the effectiveness of our approach and provide a deeper understanding of its underlying principles. 
    more » « less
  2. Abstract

    Glioblastoma is an aggressive brain cancer characterized by diffuse infiltration. Infiltrated glioma cells persist in the brain post-resection where they interact with glial cells and experience interstitial fluid flow. We use patient-derived glioma stem cells and human glial cells (i.e., astrocytes and microglia) to create a four-component 3D model of this environment informed by resected patient tumors. We examine metrics for invasion, proliferation, and putative stemness in the context of glial cells, fluid forces, and chemotherapies. While the responses are heterogeneous across seven patient-derived lines, interstitial flow significantly increases glioma cell proliferation and stemness while glial cells affect invasion and stemness, potentially related to CCL2 expression and differential activation. In a screen of six drugs, we find in vitro expression of putative stemness marker CD71, but not viability at drug IC50, to predict murine xenograft survival. We posit this patient-informed, infiltrative tumor model as a novel advance toward precision medicine in glioblastoma treatment.

     
    more » « less
  3. Context. The ionization feedback from H  II regions modifies the properties of high-mass starless clumps (HMSCs, of several hundred to a few thousand solar masses with a typical size of 0.1–1 pc), such as dust temperature and turbulence, on the clump scale. The question of whether the presence of H  II regions modifies the core-scale (~0.025 pc) fragmentation and star formation in HMSCs remains to be explored. Aims. We aim to investigate the difference of 0.025 pc-scale fragmentation between candidate HMSCs that are strongly impacted by H  II regions and less disturbed ones. We also search for evidence of mass shaping and induced star formation in the impacted candidate HMSCs. Methods. Using the ALMA 1.3 mm continuum, with a typical angular resolution of 1.3′′, we imaged eight candidate HMSCs, including four impacted by H  II regions and another four situated in the quiet environment. The less-impacted candidate HMSCs are selected on the basis of their similar mass and distance compared to the impacted ones to avoid any possible bias linked to these parameters. We carried out a comparison between the two types of candidate HMSCs. We used multi-wavelength data to analyze the interaction between H  II regions and the impacted candidate HMSCs. Results. A total of 51 cores were detected in eight clumps, with three to nine cores for each clump. Within our limited sample, we did not find a clear difference in the ~0.025 pc-scale fragmentation between impacted and non-impacted candidate HMSCs, even though H  II regions seem to affect the spatial distribution of the fragmented cores. Both types of candidate HMSCs present a thermal fragmentation with two-level hierarchical features at the clump thermal Jeans length λ J,clump th and 0.3 λ J,clump th . The ALMA emission morphology of the impacted candidate HMSCs AGAL010.214-00.306 and AGAL018.931-00.029 sheds light on the capacities of H  II regions to shape gas and dust in their surroundings and possibly to trigger star formation at ~0.025 pc-scale in candidate HMSCs. Conclusions. The fragmentation at ~0.025 pc scale for both types of candidate HMSCs is likely to be thermal-dominant, meanwhile H  II regions probably have the capacity to assist in the formation of dense structures in the impacted candidate HMSCs. Future ALMA imaging surveys covering a large number of impacted candidate HMSCs with high turbulence levels are needed to confirm the trend of fragmentation indicated in this study. 
    more » « less
  4. ABSTRACT

    We report the phase-connected timing ephemeris, polarization pulse profiles, Faraday rotation measurements, and Rotating-Vector-Model (RVM) fitting results of 12 millisecond pulsars (MSPs) discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal Radio Astronomy FAST survey (CRAFTS). The timing campaigns were carried out with FAST and Arecibo over 3 yr. 11 of the 12 pulsars are in neutron star–white dwarf binary systems, with orbital periods between 2.4 and 100 d. 10 of them have spin periods, companion masses, and orbital eccentricities that are consistent with the theoretical expectations for MSP–Helium white dwarf (He WD) systems. The last binary pulsar (PSR J1912−0952) has a significantly smaller spin frequency and a smaller companion mass, the latter could be caused by a low orbital inclination for the system. Its orbital period of 29 d is well within the range of orbital periods where some MSP–He WD systems have shown anomalous eccentricities, however, the eccentricity of PSR J1912−0952 is typical of what one finds for the remaining MSP–He WD systems.

     
    more » « less
  5. ABSTRACT The latest generation of Galactic Plane surveys is enhancing our ability to study the effects of galactic environment upon the process of star formation. We present the first data from CO Heterodyne Inner Milky Way Plane Survey 2 (CHIMPS2). CHIMPS2 is a survey that will observe the Inner Galaxy, the Central Molecular Zone (CMZ), and a section of the Outer Galaxy in 12CO, 13CO, and C18O $(J = 3\rightarrow 2)$ emission with the Heterodyne Array Receiver Program on the James Clerk Maxwell Telescope (JCMT). The first CHIMPS2 data presented here are a first look towards the CMZ in 12CO J = 3 → 2 and cover ${-}3^{\circ }\, \le \, \ell \, \le \, 5^{\circ }$ and $\mid {b} \mid \, \le \, 0{_{.}^{\circ}} 5$ with angular resolution of 15 arcsec, velocity resolution of 1 km s−1, and rms $\Delta \, T_A ^\ast =$ 0.58 K at these resolutions. Such high-resolution observations of the CMZ will be a valuable data set for future studies, whilst complementing the existing Galactic Plane surveys, such as SEDIGISM, the ${Herschel}$ infrared Galactic Plane Survey, and ATLASGAL. In this paper, we discuss the survey plan, the current observations and data, as well as presenting position–position maps of the region. The position–velocity maps detect foreground spiral arms in both absorption and emission. 
    more » « less
  6. Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μ m toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity ( PI ), the polarization fraction ( PF ), and the plane-of-the-sky B-field angle ( χ B_POS ) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χ B POS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span ~3 orders of magnitude in Stokes I and PI and ~2 orders of magnitude in PF (from ~0.2 to ~ 20%). A large scatter in PI and PF is observed for a given value of I . Our analyses show a complex B-field structure when observed over the whole region (~ 10 pc); however, at smaller scales (~1 pc), χ B POS varies coherently along the crests of the filament network. The observed power spectrum of χ B POS can be well represented with a power law function with a slope of − 1.33 ± 0.23, which is ~20% shallower than that of I . We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χ B POS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density ( N H 2 ≳ 10 23  cm −2 ) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to ~ 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields. 
    more » « less
  7. The UCNA experiment was designed to measure the neutron β-asymmetry parameter A 0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A 0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A 0 . 
    more » « less