skip to main content


Search for: All records

Creators/Authors contains: "Zanne, Amy E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified.

    We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood).

    Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites.

    Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.

     
    more » « less
  2. null (Ed.)
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests. 
    more » « less
  3. Abstract

    Models estimating decomposition rates of dead wood across space and time are mainly based on studies carried out in temperate zones where microbes are dominant drivers of decomposition. However, most dead wood biomass is found in tropical ecosystems, where termites are also important wood consumers. Given the dependence of microbial decomposition on moisture with termite decomposition thought to be more resilient to dry conditions, the relative importance of these decomposition agents is expected to shift along gradients in precipitation that affect wood moisture.

    Here, we investigated the relative roles of microbes and termites in wood decomposition across precipitation gradients in space, time and with a simulated drought experiment in tropical Australia. We deployed mesh bags with non‐native pine wood blocks, allowing termite access to half the bags. Bags were collected every 6 months (end of wet and dry seasons) over a 4‐year period across five sites along a rainfall gradient (ranging from savanna to wet sclerophyll to rainforest) and within a simulated drought experiment at the wettest site. We expected microbial decomposition to proceed faster in wet conditions with greater relative influence of termites in dry conditions.

    Consistent with expectations, microbial‐mediated wood decomposition was slowest in dry savanna sites, dry seasons and simulated drought conditions. Wood blocks discovered by termites decomposed 16–36% faster than blocks undiscovered by termites regardless of precipitation levels. Concurrently, termites were 10 times more likely to discover wood in dry savanna compared with wet rainforest sites, compensating for slow microbial decomposition in savannas. For wood discovered by termites, seasonality and drought did not significantly affect decomposition rates.

    Taken together, we found that spatial and seasonal variation in precipitation is important in shaping wood decomposition rates as driven by termites and microbes, although these different gradients do not equally impact decomposition agents. As we better understand how climate change will affect precipitation regimes across the tropics, our results can improve predictions of how wood decomposition agents will shift with potential for altering carbon fluxes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. As the primary decomposers of organic material in terrestrial ecosystems, fungi are critical agents of the global carbon cycle. Yet our ability to link fungal community composition to ecosystem functioning is constrained by a limited understanding of the factors accounting for different wood decomposition rates among fungi. Here we examine which traits best explain fungal decomposition ability by combining detailed trait-based assays on 34 saprotrophic fungi from across North America in the laboratory with a 5-y field study comprising 1,582 fungi isolated from 74 decomposing logs. Fungal growth rate (hyphal extension rate) was the strongest single predictor of fungal-mediated wood decomposition rate under laboratory conditions, and accounted for up to 27% of the in situ variation in decomposition in the field. At the individual level, decomposition rate was negatively correlated with moisture niche width (an indicator of drought stress tolerance) and with the production of nutrient-mineralizing extracellular enzymes. Together, these results suggest that decomposition rates strongly align with a dominance-tolerance life-history trade-off that was previously identified in these isolates, forming a spectrum from slow-growing, stress-tolerant fungi that are poor decomposers to fast-growing, highly competitive fungi with fast decomposition rates. Our study illustrates how an understanding of fungal trait variation could improve our predictive ability of the early and midstages of wood decay, to which our findings are most applicable. By mapping our results onto the biogeographic distribution of the dominance-tolerance trade-off across North America, we approximate broad-scale patterns in intrinsic fungal-mediated wood decomposition rates.

     
    more » « less
  5. Abstract

    Plant species vary in how they regulate moisture and this has implications for their flammability during wildfires. We explored how fuel moisture is shaped by variation within five hydraulic traits: saturated moisture content, cell wall rigidity, cell solute potential, symplastic water fraction and tissue capacitance.

    Using pressure–volume curves, we measured these hydraulic traits in twigs and distal shoots (i.e. twigs + leaves) in 62 plant species across four wooded communities in south‐eastern Australia. Moisture content of fine fuels was then estimated for circumstances typical of fire weather. These projections were made assuming that under the hot, dry, windy conditions typical of large wildfires, leaves and fine twigs would function at internal water pressures close to wilting point (i.e. turgor loss point, TLP). The effect of different moisture contents at TLP on ignition time was then modelled using a fully mechanistic, finite element model of biomass ignition based on standard principles of physical chemistry.

    We also measured predawn water potential, an indication of plant access to soil water that is influenced by root architecture. These data were used to model how root traits influence fuel moisture and ignition time.

    Most variation among species in fuel moisture under fire weather conditions arose from differences in saturated moisture content (3.4‐ to 3.6‐fold variation). Twig capacitance was also an important driver of fuel moisture under these weather conditions (1.9‐ to 2.2‐fold variation in moisture content). A suite of other leaf and root traits influencing how much shoots dry out as they approach wilting point each contributed 1.0‐ to 1.6‐fold variation in projected fuel moisture during fire weather. Fuel moisture variation in turn drove variation in flammability by modifying predicted ignition time.

    Two main life‐history types in fire‐prone habitats are obligate seeders and resprouters. There were no significant differences between these species groups in estimated fuel moisture during fire weather, nor in any measured hydraulic traits.

    Live fuel moisture is an important determinant of wildfire activity. Our data show that variation in tissue saturated moisture content among co‐occurring species represents an important ecological store of variation in flammability in the study communities.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  6. Abstract

    Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation.

    To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non‐native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers.

    Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna.

    We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite‐driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities.

    Synthesis. Ecosystem‐scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite‐driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world‐wide.

     
    more » « less
  7. Summary

    Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3–98.8% mass loss while decaying in common garden ‘rotplots’ in a temperate oak‐hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1–5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co‐occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.

     
    more » « less