skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Wenbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3(PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1at 325 K while applying a −0.75 V bias.

     
    more » « less
  3. Charge transport in amorphous organic semiconductors is governed by carriers hopping between localized states with small spin diffusion length. Furthermore, the interfacial resistance of organic spin valves (OSVs) is poorly controlled resulting in controversial reports of the magnetoresistance (MR) response. Here, surface‐initiated Kumada transfer polycondensation is used to covalently graft π‐conjugated poly(3‐methylthiophene) brushes from the La0.67Sr0.33MnO3(LSMO) bottom electrode. The covalent attachment along with the brush morphology allows control over the LSMO/brush interfacial resistance and large spacer mobility. Remarkably, with 15 nm brush spacer layer, an optimum MR effect of 70% at cryogenic temperatures and a MR of 2.7% at 280 K are observed. The temperature dependence of the MR is nearly an order of magnitude weaker than that found in control OSVs made from spin‐coated poly(3‐hexylthiophene). Using a variety of different brush layer thicknesses, the thickness‐dependent MR at 20 K is investigated. A spin diffusion length of 17 nm at −5 mV junction voltage rapidly increased to 48.4 nm at −260 mV.

     
    more » « less