skip to main content


Search for: All records

Creators/Authors contains: "Zhou, Yitong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soft robotic grippers can gently grasp and maneuver objects. However, they are difficult to model and control due to their highly deformable fingers and complex integration with robotic systems. This paper investigates the design requirements as well as the grasping capabilities and performance of a soft gripper system based on fluidic prestressed composite (FPC) fingers. An analytical model is constructed as follows: each finger is modeled using the chained composite model (CCM); strain energy and work done by pressure and loads are computed using polynomials with unknown coefficients; net energy is minimized using the Rayleigh–Ritz method to calculate the deflected equilibrium shapes of the finger as a function of pressure and loads; and coordinate transformation and gripper geometries are combined to analyze the grasping performance. The effects of prestrain, integration angle, and finger overlap on the grasping performance are examined through a parametric study. We also analyze gripping performance for cuboidal and spherical objects and show how the grasping force can be controlled by varying fluidic pressure. The quasi-static responses of fabricated actuators are measured under pressures and loads. It is shown that the actuators’ modeled responses agree with the experimental results. This work provides a framework for the theoretical analysis of soft robotic grippers and the methods presented can be extended to model grippers with different types of actuation. 
    more » « less
  2. Soft and continuously controllable grippers can be assembled from fluidic prestressed composite (FPC) actuators. Due to their highly deformable features, it is difficult to model such actuators for large deflections. This article proposes a new method for modeling large deflections of FPC actuators called the chained composite model (CCM) to characterize the quasi-static response to an applied fluid pressure and load. The CCM divides an FPC actuator into discrete elements and models each element by a small rotation model. The strain energy of each element and the work done by pressure and loads are computed using third-order displacement polynomials with unknown coefficients; then, the total energy is minimized to calculate stable shapes using the Rayleigh–Ritz method. This study provides a set of systematic design rules to help the robotics community create FPC actuators by understanding how their responses vary as a function of input forces and pressures for a number of modeling and design parameters. Composite actuators are fabricated and a soft gripper is developed to demonstrate the grasping ability of the FPCactuators. Pneumatic pressure and end loads are applied to the composite actuators, and their responses are measured. The modeled responses of the actuators are shown to be in agreement with the measured responses. 
    more » « less
  3. Abstract Continuous layer jamming is an effective tunable stiffness mechanism that utilizes vacuum to vary friction between laminates enclosed in a membrane. In this paper, we present a discrete layer jamming mechanism that is composed of a multilayered beam and multiple variable pressure clamps placed discretely along the beam; system stiffness can be varied by changing the pressure applied by the clamps. In comparison to continuous layer jamming, discrete layer jamming is simpler as it can be implemented with dynamic variable pressure actuators for faster control, better portability, and no sealing issues due to no need for an air supply. Design and experiments show that discrete layer jamming can be used for a variable stiffness co-robot arm. The concept is validated by quasi-static cantilever bending experiments. The measurements show that clamping 10% of the beam area with two clamps increases the bending stiffness by around 17 times when increasing the clamping pressure from 0 to 3 MPa. Computational case studies using finite element analysis for the five key parameters are presented, including clamp location, clamp width, number of laminates, friction coefficient, and number of clamps. Clamp location, number of clamps, and number of laminates are found to be most useful for optimizing a discrete layer jamming design. Actuation requirements for a variable pressure clamp are presented based on results from laminate beam compression tests. 
    more » « less