skip to main content


Search for: All records

Award ID contains: 0719267

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state. 
    more » « less