skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 0919452

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The study of adaptation helps explain biodiversity and predict future evolution. Yet the process of adaptation can be difficult to observe due to limited phenotypic variation in contemporary populations. Furthermore, the scarcity of male fitness estimates has made it difficult to both understand adaptation and evaluate sexual conflict hypotheses. We addressed both issues in our study of two anther position traits in wild radish (Raphanus raphanistrum): anther exsertion (long filament − corolla tube lengths) and anther separation (long − short filament lengths). These traits affect pollination efficiency and are particularly interesting due to the unusually high correlations among their component traits. We measured selection through male and female fitness on wild radish plants from populations artificially selected to recreate ancestral variation in each anther trait. We found little evidence for conflicts between male and female function. We found strong evidence for stabilizing selection on anther exsertion and disruptive selection on anther separation, indicating positive and negative correlational selection on the component traits. Intermediate levels of exsertion are likely an adaptation to best contact small bees. The function of anther separation is less clear, but future studies might investigate pollen placement on pollinators and compare species possessing multiple stamen types. 
    more » « less
  2. Summary The mechanisms underlying trait conservation over long evolutionary time scales are poorly known. These mechanisms fall into the two broad and nonmutually exclusive categories of constraint and selection. A variety of factors have been hypothesized to constrain trait evolution. Alternatively, selection can maintain similar trait values across many species if the causes of selection are also relatively conserved, while many sources of constraint may be overcome over longer periods of evolutionary divergence. An example of deep trait conservation is tetradynamy in the large family Brassicaceae, where the four medial stamens are longer than the two lateral stamens. Previous work has found selection to maintain this difference in lengths, which we call anther separation, in wild radish,Raphanus raphanistrum.Here, we test the constraint hypothesis using five generations of artificial selection to reduce anther separation in wild radish.We found a rapid linear response to this selection, with no evidence for depletion of genetic variation and correlated responses to this selection in only four of 15 other traits, suggesting a lack of strong constraint.Taken together, available evidence suggests that tetradynamy is likely to be conserved due to selection, but the function of this trait remains unclear. 
    more » « less