Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In an effort to improve our knowledge on the horizontal and vertical distribution of lightning initiation and propagation, ~500 multicells (producing a total of 72,619 flashes), 27 mesoscale convective systems (producing 214,417 flashes) and 23 supercells (producing 169,861 flashes) that occurred over northern Alabama and southern Tennessee were analyzed using data from the North Alabama Lightning Mapping Array and the Multi‐Radar Multi‐Sensor suite. From this analysis, two‐dimensional (2‐D) histograms of where flashes initiated and propagated relative to radar reflectivity and altitude were created for each storm type. The peak of the distributions occurred between 8.0 and 10.0 km (−24.0 to −38.5 °C) and between 30 and 35 dBZfor flashes that initiated within multicellular storms. For flashes that initiated within mesoscale convective systems, these peaks were 8.0–9.0 km (−27.1 to −34.6 °C) and 30–35 dBZ, respectively, and for supercells, they were 10.0–12.0 km (−42.6 to −58.1 °C) and 35–40 dBZ, respectively. The 2‐D histograms for the flash propagations were slightly different than for the flash initiations and showed that flashes propagated in lower reflectivities as compared to where they initiated. The 2‐D histograms were also compared to test cases; the root‐mean‐square errors and the Pearson product moment correlation coefficient (R) were calculated with several of the comparisons havingRvalues >0.7 while the root‐mean‐square errors were always ≤0.017 (≤10%), irrespective of storm type. Finally, the mean flash sizes for the multicell, mesoscale convective system, and supercell flashes were 8.3, 9.9, and 7.4 km, respectively.more » « less
- 
            Abstract Two dimensional (2‐D) histogram distributions of lightning flashes relative to radar reflectivity and altitude were created using a total of 41,180 intercloud/intracloud (IC) flashes, 3,326 cloud‐to‐ground (CG) flashes, and 4,349 hybrid (HY) flashes that originated in multicells; 111,479 IC flashes, 8,588 CG flashes, and 11,699 HY flashes that originated in mesoscale convective systems; and 91,283 IC flashes, 3,023 CG flashes, and 7,872 HY flashes that originated in supercells that occurred over northern Alabama and southern Tennessee. It was shown that although CG flashes initiate and propagate at the same altitude irrespective of storm type, IC flashes could have differences of up to 10 °C, while for HY flashes these differences increased to up to 20 °C relative to storm type. Further, IC, CG, and HY flashes propagated in lower reflectivities than where they initiated, while CG flashes initiated and propagated within higher reflectivities than IC and HY flashes. HY flashes were also twice as large as IC flashes and ~40% larger than CG flashes, and flashes that originated in mesoscale convective systems had larger overall sizes as compared to multicells and supercells. When comparing the new 2‐D histogram distributions to the legacy distributions used for the calculation of lightning‐produced nitrogen oxides (LNOx), it was shown that the new distributions perform much better, with higher Pearson product moment correlation coefficient values and much lower root‐mean‐square errors. These new distributions are thus more appropriate to use when modeling LNOx and will lead to more accurate LNOx estimations than using the legacy distributions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
