skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radar Reflectivity and Altitude Distributions of Lightning as a Function of IC, CG, and HY Flashes: Implications for LNOx Production
Abstract Two dimensional (2‐D) histogram distributions of lightning flashes relative to radar reflectivity and altitude were created using a total of 41,180 intercloud/intracloud (IC) flashes, 3,326 cloud‐to‐ground (CG) flashes, and 4,349 hybrid (HY) flashes that originated in multicells; 111,479 IC flashes, 8,588 CG flashes, and 11,699 HY flashes that originated in mesoscale convective systems; and 91,283 IC flashes, 3,023 CG flashes, and 7,872 HY flashes that originated in supercells that occurred over northern Alabama and southern Tennessee. It was shown that although CG flashes initiate and propagate at the same altitude irrespective of storm type, IC flashes could have differences of up to 10 °C, while for HY flashes these differences increased to up to 20 °C relative to storm type. Further, IC, CG, and HY flashes propagated in lower reflectivities than where they initiated, while CG flashes initiated and propagated within higher reflectivities than IC and HY flashes. HY flashes were also twice as large as IC flashes and ~40% larger than CG flashes, and flashes that originated in mesoscale convective systems had larger overall sizes as compared to multicells and supercells. When comparing the new 2‐D histogram distributions to the legacy distributions used for the calculation of lightning‐produced nitrogen oxides (LNOx), it was shown that the new distributions perform much better, with higher Pearson product moment correlation coefficient values and much lower root‐mean‐square errors. These new distributions are thus more appropriate to use when modeling LNOx and will lead to more accurate LNOx estimations than using the legacy distributions.  more » « less
Award ID(s):
1063573
PAR ID:
10459384
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
123
Issue:
22
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In an effort to improve our knowledge on the horizontal and vertical distribution of lightning initiation and propagation, ~500 multicells (producing a total of 72,619 flashes), 27 mesoscale convective systems (producing 214,417 flashes) and 23 supercells (producing 169,861 flashes) that occurred over northern Alabama and southern Tennessee were analyzed using data from the North Alabama Lightning Mapping Array and the Multi‐Radar Multi‐Sensor suite. From this analysis, two‐dimensional (2‐D) histograms of where flashes initiated and propagated relative to radar reflectivity and altitude were created for each storm type. The peak of the distributions occurred between 8.0 and 10.0 km (−24.0 to −38.5 °C) and between 30 and 35 dBZfor flashes that initiated within multicellular storms. For flashes that initiated within mesoscale convective systems, these peaks were 8.0–9.0 km (−27.1 to −34.6 °C) and 30–35 dBZ, respectively, and for supercells, they were 10.0–12.0 km (−42.6 to −58.1 °C) and 35–40 dBZ, respectively. The 2‐D histograms for the flash propagations were slightly different than for the flash initiations and showed that flashes propagated in lower reflectivities as compared to where they initiated. The 2‐D histograms were also compared to test cases; the root‐mean‐square errors and the Pearson product moment correlation coefficient (R) were calculated with several of the comparisons havingRvalues >0.7 while the root‐mean‐square errors were always ≤0.017 (≤10%), irrespective of storm type. Finally, the mean flash sizes for the multicell, mesoscale convective system, and supercell flashes were 8.3, 9.9, and 7.4 km, respectively. 
    more » « less
  2. Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s. 
    more » « less
  3. Orographic deep convection (DC) initiation and rapid evolution from supercells to mesoscale convective systems (MCS) are common near the Sierras de Cόrdoba, Argentina, which was the focal point of the Remote Sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used an idealized numerical model with elongated north-south terrain similar to that of the Sierras de Cόrdoba to address how variations in terrain height affected the environment and convective morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations with higher terrain, owing both to stronger upslope flows and standing mountain waves. All simulations resulted in supercell formation, with higher terrain supercells initiating closer to the terrain peak and moving slower off the terrain. Higher terrain simulations displayed increases in both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher terrain supercells led to surging outflow that reduced convective available potential energy accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may lead to substantial local variations in convective morphology. 
    more » « less
  4. Abstract During the early morning hours of 5 November 2018, a mature mesoscale convective system (MCS) propagated discretely over the second-most populous province of Argentina, Córdoba Province, during the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations–Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO–CACTI) joint field campaigns. Storm behavior was modified by the Sierras de Córdoba, a north–south-oriented regional mountain chain located in the western side of the province. Here, we present observational evidence of the discrete propagation event and the impact of the mountains on the associated physical processes. As the mature MCS moved northeastward and approached the windward side of the mountains, isolated convective cells developed downstream in the mountain lee, 20–50 km ahead of the main convective line. Cells were initiated by an undular bore, which formed as the MCS cold pool moved over the mountain ridge and perturbed the leeside nocturnal, low-level stable layer. The field of isolated cells organized into a new MCS, which continued to move northeastward, while the parent storm decayed as it traversed the mountains. Only the southern portion of the storm propagated discretely, due to variability in mountain height along the chain. In the north, taller mountain peaks prevented the MCS cold pool from moving over the terrain and perturbing the stable layer. Consequently, no bore was generated, and no discrete propagation occurred in this region. To the south, the MCS cold pool was able to traverse the lower-relief mountains, and the discrete propagation was successful. 
    more » « less
  5. Abstract Previous studies have shown that subsequent leaders in positive cloud‐to‐ground lightning (+CG) flashes rarely traverse pre‐existing channels to ground. In this paper, we present evidence that this actually can be common, at least for some thunderstorms. Observations of +CG flashes in a supercell storm in Argentina by Córdoba Argentina Marx Meter Array (CAMMA) are presented, in which 54 (64%) of 84 multiple‐stroke +CG flashes had subsequent leaders following a pre‐existing channel to ground. These subsequent positive leaders are found to behave similarly to their negative counterparts, including propagation speeds along pre‐existing channels with a median of 8 × 106 m/s, which is comparable to that of negative dart leaders. Two representative multiple‐stroke +CG flashes are presented and discussed in detail. The observations reported herein call for an update to the traditional explanation of the disparity between positive and negative lightning. 
    more » « less