skip to main content

Search for: All records

Award ID contains: 1138497

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recognition of middle grades as a critical juncture in CS education has led to the widespread development of CS curricula and integration efforts. The goal of many of these interventions is to develop a set of underlying abilities that has been termed computational thinking (CT). This goal presents a key challenge for assessing student learning: we must identify assessment items associated with an emergent understanding of key cognitive abilities underlying CT that avoid specialized knowledge of specific programming languages. In this work we explore the psychometric properties of assessment items appropriate for use with middle grades (US grades 6-8; ages 11-13) students. We also investigate whether these items measure a single ability dimension. Finally, we strive to recommend a "lean" set of items that can be completed in a single 50-minute class period and have high face validity. The paper makes the following contributions: 1) adds to the literature related to the emerging construct of CT, and its relationship to the existing CTt and Bebras instruments, and 2) offers a research-based CT assessment instrument for use by both researchers and educators in the field.
  2. A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term memory network-based evidence models and clusters sequences of students' problem-solving behaviors across consecutive tasks. We investigate this strategy based temporal analytics framework on a dataset of problem solving behaviors collected from student interactions with a game-based learning environment for middle school computational thinking. The results of an evaluation indicate that the strategy-based temporal analytics framework significantly outperforms competitive baseline models with respect to stealth assessment predictive accuracy.